
Diploma Thesis:

Using Sketch Recognition

to Enhance the Human-Computer Interface

of Geometry Software

Dirk Materlik

December 2003

Supervisor:
Prof. Dr. Ulrich Kortenkamp

Freie Universität Berlin
Institut für Informatik

Takustr. 9
14195 Berlin

Author:
Dirk Materlik

Zossener Str. 16
10961 Berlin

materlik@inf.fu-berlin.de

ii

Abstract

Recent advances in computer technology allow the use of Dynamic Geometry

Software on new, pen-driven devices, such as Interactive Whiteboards and PDAs.

However, user interfaces designed for desktop use are awkward on those de-

vices and do not take advantage of the characteristics of pen-based input. This

thesis addresses adapting the user interface of the Dynamic Geometry Software

Cinderellato pen-driven devices by using stroke recognition. Different usage sce-

narios are analyzed and two approaches to stroke recognition are implemented:

ScribblingandCinderella Flow Menus. It is shown that together, they signifi-

cantly enhance the user experience in those scenarios.

iii

Thanks

First of all, I thank my supervisor Ulrich Kortenkamp for insights into Cinderella code

and geometry in general, for supplying me with all the hardware and gadgets I needed,

a work place at the university, and a license for the excellent IDEA IDE. And of

course for always answering my questions and advising me on the best way to pro-

ceed. Thanks to Jürgen Richter-Gebert for the idea and a prototype of ascribblemode

and letting me use his idea for my diploma thesis. I thank Enno Brehm for discovering

flow menusand pair-programming the Cinderella version with me.

Also a big thank you to the “beta-readers” who read earlier versions of this text and

provided valuable opinions, namely Lukasz Pekacki, Hendrik Steller, Holger Materlik

and most of all Miriam Busch.

Typographic Note

We useemphasized typeto highlight technical terms that are used for the first time and
explained nearby.

When talking about Java implementations, we usea monospaced font when
referring to actual class names andmethodNames() . When a class name is used in
normal font, the normal English meaning of the word is intended.

CONTENTS iv

Contents

1 Introduction 1

1.1 Introduction to Dynamic Geometry Software 1

1.2 Topic of this Work . 4

1.3 Outline . 5

2 Planning 6

2.1 Analysis of Target Scenarios . 6

2.1.1 Overview . 6

2.1.2 Presentations with Digital Whiteboards 7

2.1.3 Geometric Pocket Calculator 9

2.1.4 Graphics Tablet . 11

2.1.5 Traditional Pointing Devices 12

2.2 Typical Elements in Dynamic Geometry Software 12

2.3 Evaluation of the Previous Scribbling Implementation in Cinderella . 14

2.3.1 Capabilities . 14

2.3.2 Advantages . 16

2.3.3 Problematic Issues . 17

2.3.4 Assessment of Relevance . 18

2.4 Previous Work . 19

2.4.1 Sketch Recognition . 19

2.4.2 Gestures . 20

2.4.3 Sketch3D . 22

2.4.4 Menus . 22

2.5 Decisions . 23

3 Scribbling 25

3.1 Requirements . 25

3.2 Core Design of the Framework . 26

3.3 Implementation of the Framework 31

3.4 Interactive Fine Tuning . 33

CONTENTS v

3.5 Calculating Common Intermediate Results 35

3.5.1 Overview . 35

3.5.2 Area Distiller . 35

3.5.3 Center and Distance from Center Distiller 35

3.5.4 Rotation Direction Distiller 36

3.5.5 Segmentizer . 37

3.5.6 Traversed Objects . 40

3.6 Dropped Approaches . 40

4 Applications of the Scribbling Framework 44

4.1 ScribbleD– Recognizing Geometric Objects 44

4.1.1 Design Principles . 44

4.1.2 Visualizing Progress with Hinters 44

4.1.3 Selecting and Moving . 45

4.1.4 Creating Geometric Elements 45

4.1.5 Gestures . 49

4.1.6 Evaluation . 51

4.2 ScribbleP– Interfacing to Simulations 51

4.2.1 Goal and Design . 51

4.2.2 Similarities to ScribbleD . 52

4.2.3 Creating Physics Elements 52

4.2.4 Starting and Stopping the Simulation 55

4.2.5 Evaluation . 55

4.3 Mode Switching . 56

5 Flow Menus 59

5.1 Previous Work . 59

5.2 Adaptation for Cinderella . 61

5.3 Design and Implementation . 62

5.4 Flow Menu Applications . 64

5.4.1 Mode Switching . 64

5.4.2 Quikwriting . 65

CONTENTS vi

5.4.3 Context Menu / Inspecting 66

6 Results 68

6.1 Evaluation of the New User Interface 68

6.1.1 Presentations with Digital Whiteboards 68

6.1.2 Geometric Pocket Calculator 71

6.1.3 Graphics Tablet . 73

6.1.4 Traditional Pointing Devices 73

6.2 Future Work . 74

6.3 Conclusion . 76

A User’s Guide to Scribbling 77

List of Figures 78

References 80

1 INTRODUCTION 1

1 Introduction

To familiarize the reader with the environment that this thesis was written in, we first

give a short introduction to the research area ofDynamic Geometry Softwarein gen-

eral. We then introduceCinderella[6] in particular. Following that, we describe the

topic of the thesis. At the end of the introduction, we outline how this document is

structured.

1.1 Introduction to Dynamic Geometry Software

Think of a page in the Geometry chapter of a mathematics schoolbook [4]. It probably

contains an illustration of some geometrical fact, e.g., the three angular bisectors of

a triangle intersecting in one point. The illustration might look like figure 1. The

geometric relationship holds for any triangle; however, the picture only shows a single

example. For a textbook, there is no easy way to convey intuitively that this is true

for all triangles.Dynamic Geometry Softwareutilizes computers to allow interactive

exploration of a geometric construction, as visualized in figure 2. The free points, here

the vertices of the triangle, can be moved with the mouse. The constructed elements,

here the angular bisectors and their intersection, are moved accordingly. The user

experiences that, no matter how the vertices are moved, the bisectors always intersect

in one point.

Figure 1: A static figure Figure 2: An “interactive” figure

1 INTRODUCTION 2

The difference to vector-based drawing programs or CAD systems thus is that Dy-

namic Geometry Software internally stores relationships of the elements. This is done

implicitly as the construction is created. When one of the starting points is now moved,

the computer recalculates the positions of all dependent elements. The user is pre-

sented with the illusion of a continuous, smooth movement. This allows him or her

to see how the movements of the starting points affect the other elements, and thus

intuitively grasp geometric relationships.

We will describe typical elements of a construction in a Dynamic Geometry Soft-

ware in section 2.2, when describing the planning phase.

An important problem for Dynamic Geometry Software is that in the computer

context, time is not continual: when the user moves the mouse, the software is given

a sequence of discrete pointer positions. Therefore, it must decide at every time step

how to draw dependent elements on the screen. These should move along with the

moving element in a way that “makes sense.” What makes sense in the general case is

surprisingly difficult do define mathematically [4, 5].

Cinderella[6, 16] is a Dynamic Geometry Software that solves the continuity prob-

lem well by using tracing. It uses projective geometry with complex coordinates. It

supports more views on a construction than the classical Euclidean view, e.g., a spher-

ical projection or hyperbolic views. A prover is integrated into the software. It proves

incidences and notices when a new element is equal to one already in the construction.

Another contribution of the software is the generalized handling ofloci, the traces of

elements when other elements are moved on a “road,” like a line or a circle.

The program is implemented in Java, a cross-platform object-oriented language.

The design of Cinderella follows the object-oriented paradigm.

Figure 3 shows the main window of Cinderella, with an Euclidean view on a con-

struction defining a parabola using a locus. In the upper part of the window, there are

two toolbars. The upper one contains actions that act on the whole construction, like

Load, Save, Undo, Select Alletc. The one below shows a selection ofmodes,e.g., the

currently selectedMovemode and theAdd a Pointmode next to it. Below the main

1 INTRODUCTION 3

Figure 3: The main Cinderella window

construction area follows a toolbar that is specific to the view; here, modes for modi-

fying the currently viewed part of the construction or rendering options like displaying

a grid can be found. A menu bar is used for less common actions1.

Cinderella is targeted at multiple audiences and usage scenarios. For one thing,

it is useful to the academic who needs to visualize geometric relationships. It is also

useful if the researcher wishes to give a presentation or lecture: because the geometry

is dynamic, moving pictures can easily be integrated into the talk. Constructions can

be created during the talk, facilitating comprehension.

It is also useful for teachers in classroom situations. Instead of struggling with

the classic equipment of blackboard, chalk, and oversized rulers, a teacher can simply

1Since this screenshot was taken on a Macintosh, the menu bar is at the top of the screen; on other
platforms, it is attached to the window.

1 INTRODUCTION 4

draw an exact construction and use a projector to present it. Using moving construc-

tions, lessons are bound to become more interesting. Dynamic Geometry Software

also enables presenting more complex constructions, as the time it takes to draw a

figure is reduced.

A more innovative use of Cinderella in the classroom is to let students themselves

use the software. Interactive constructions allow students to develop a geometric in-

tuition. They are rescued from doing manual constructions with pencil and paper that

never come out exact. Instead, they study an arbitrary number of configurations of the

construction and may learn through exploring.

Cinderella also allows creatinginteractive exercisesthat students can solve on their

own.

1.2 Topic of this Work

Recent advances in computer technology enable the use of Dynamic Geometry Soft-

ware in new scenarios.Personal Digital Assistants(PDAs) are palm-sized handheld

computers originally developed for keeping track of addresses, appointments, and so

on. They have become powerful enough to run Dynamic Geometry Software. In par-

ticular, Cinderella can be run as it is written in Java. PDAs are preferable to laptops

or desktop computers in some situations because of portability. In other situations,

e.g., in a classroom situation, they are preferable because they get less in the way of

human-human interaction.

Interactive Whiteboardshave become affordable enough to be in wide use. They

can enhance the aforementioned presentation situation. Previously, the presenter had

to concern him- or herself with the laptop computer while using Dynamic Geometry

Software. Interactive whiteboards allow input from the natural position of the presen-

ter, in front of the audience.

Both of these new devices arepen-driven– a physical object, the pen, is used

to control the pointer position. This is very different from the conventional mouse-

and-keyboard-based input model, because the logical position of the pointer always

1 INTRODUCTION 5

corresponds exactly to the physical position of the user’s hand. While these devices

are compatible with programs that expect normal mouse input, users can benefit from

adapting the software to this input model. Using the pens of these devices as we use

regular pens naturally leads tosketch recognition,the analysis of freehand sketches

executed by the user. We believe sketch recognition can play an important part in the

adaptation.

This work focuses on changes to the Interactive Geometry SoftwareCinderella

to enhance its usability using sketch recognition techniques, with a focus on, but not

limited to, pen-driven devices.

1.3 Outline

In section 2, we analyze the usage scenarios of Cinderella that shall be improved. We

then give an overview over previous work in sketch recognition, both academic and in

specific software.

During the course of this thesis, two different approaches to sketch recognition

were actually implemented:Scribbling and Cinderella Flow Menus. In section 3,

we explain the design and implementation of the main new module in Cinderella,

Scribbling. This module analyzes user-drawn sketches. The different ways that this

new module is used are introduced in section 4; one of them is the creation of geometric

objects for a construction.

In Section 5, we show the design and implementation ofCinderella Flow Menus,

first explaining the previous work that they evolved from. The different places they are

now used in Cinderella are introduced afterwards.

Finally, section 6 concludes this thesis by evaluating if and how these changes in

the user interface improved human-computer interaction for the target scenarios. It

then presents some ideas for future work and research before ending with finishing

remarks.

2 PLANNING 6

2 Planning

This section describes the planning phase of the thesis. We first analyze the scenarios

for which we wish to improve the human-computer interface. Afterwards, we describe

common geometric objects of Dynamic Geometry Software, so we can plan which

elements to support in the new interface. We then give an overview over previous

work in stroke recognition, both from the academic domain and specific software. A

discussion of the existing sketch recognition implementation for Cinderella follows.

Finally, the last subsection explains our decisions about what to implement to improve

the user interface in the target scenarios.

2.1 Analysis of Target Scenarios

2.1.1 Overview

This work aims to improve the Human-Computer Interface of Dynamic Geometry

Software by usingstroke recognition. A stroke,to us, is the movement of a pointing

device. Usually a stroke is started by pressing the primary mouse button and ended by

releasing it. Stroke recognition, then, means analyzing strokes to figure out the user’s

intention of a particular movement. Of course, the normal user interface elements like

toolbars and menus can be seen as one way of stroke recognition; however, we use the

term only for non-traditional user interface elements.

There are different ways that stroke recognition could be used advantageously in

Dynamic Geometry Software. One possibility is recognizing elements directly, e.g.,

recognizing a circle from a sketch of a circle. Another is using a circle-shaped stroke

to select a circle-creation mode.

The practical part of this thesis, actually implementing a stroke recognition facil-

ity, is done for Cinderella. To decide upon the way the stroke recognition facility is

designed, implemented and integrated into Cinderella, we must first analyze the sce-

narios that we wish to enhance. We consider four different scenarios that could ben-

efit from sketch recognition in different ways: presentations using Interactive White-

2 PLANNING 7

boards, PDAs, using desktop computers with graphics tablets and with regular mice.

However, the first two are given priority because they are only poorly supported with

the regular version of Cinderella.

In the following subsections, we first explain the scenario and then enumerate the

special characteristics of the scenario that could affect the new stroke recognition fa-

cility. We explain the shortcomings of the current user interface in the scenario and

finally give conclusions that should be kept in mind while implementing the changes.

2.1.2 Presentations with Digital Whiteboards

A Digital Whiteboardaims to replace conventional black- or whiteboards with com-

puter-based devices. The picture from the computer is projected onto the whiteboard

using a projector. The board reports the position of a special pen back to the computer,

where this data is interpreted as regular mouse movements. All this normally should be

transparent to the application running on the computer. Figure 4 shows a whiteboard

made by Numonics, attached to a computer running the normal version of Cinderella

[18, 19, 20].

The usage scenario we intend to support here is chiefly that of giving a lecture or

talk. A mathematics teacher might use Cinderella for Geometry lessons, or a researcher

could use it to demonstrate a point during a presentation. We want to preserve the ad-

vantages of traditional blackboards: the way a construction can be developed gradually

while explaining it to the audience, the easy way corrections can be made and the pos-

sibilities of interacting with the audience while producing the construction.

On many whiteboards, there are at least two virtual mouse buttons available. The

primary one is activated by pressing the pen down on the surface of the board and

the secondary one by a button on the side pen. Also, these boards mostly support the

differentiation between mouse drags and mouse movements, i.e. movements while

touching the board or moving slightly above it. However, it should be noted that

there are also touchscreen-based digital whiteboards. These can only simulate a single

mouse button and cannot know where the pen is when it is not pressed down. The

2 PLANNING 8

Figure 4: A Numonics Whiteboard attached to a computer running Cinderella with its
normal user interface.

resolution of an interactive whiteboard is normally as good as that of the projector.

One reason that the usage of the normal user interface is awkward with these boards

is the software’s reliance on a central toolbar to select the current mode. The toolbar is

in a fixed position at the top of the screen, and switching modes means having to move

the hand a long way physically two times, to the toolbar and back again; the problem

is clearly visible already in figure 4. This is very different to normal mouse usage,

where all of the screen can be traversed quickly. The issue is exacerbated because

using Cinderella normally involves switching modes quite often.

Another annoyance is the use of separate windows to change the properties of ele-

ments. Moving, resizing and closing windows is more cumbersome on a whiteboard,

again because moving the pointing device means physical movement. Also, the nature

of a window is that it is now possible to interact with the program in two separate

ways; however, while giving a talk, the focus is usually on one task at a time, so these

separate interaction possibilities distract the audience.

2 PLANNING 9

In summary, we should try to minimize the necessity of often moving the pointer

large distances. One way to do this is to reduce the number of mode switches necessary

to create a construction. Directly recognizing geometric objects from the stroke should

be possible at least for the “basic” objects, such as lines, circles and points. Alternately,

we could find a way to switch modes without moving the pen far from the area it is

currently in. Additionally, we need a way to change the properties of elements without

moving the pen far and preferably without opening new windows.

2.1.3 Geometric Pocket Calculator

PDAs such as the Sharp Zaurus shown in figure 5 feature hardware that is as pow-

erful as that of desktop computers a few years ago2. They are fast enough to run a

Java Virtual Machine and a software package such as Cinderella. This opens up new,

interesting possibilities for the use of Interactive Geometry Software.

We see two main scenarios in which a PDA equipped with geometry software can

be used where such software was previously not available. The first is as ageometric

pocket calculator,i.e. a device that does for geometry what regular pocket calculators

do for arithmetic. Using a handheld, portable, and thus highly available device, the

user can create exact constructions and quickly visualize geometric relations. This is

superior to using pen and paper, because the drawing will be exact and the software

can prove relations. Furthermore, since the same software can be run on the handheld

and desktop PCs, exchanging constructions is very easy. This makes it possible to later

build upon ideas sketched on the PDA.

The second scenario in which a PDA could be a better choice than a notebook

or desktop PC is for classroom use in schools. Normal computers establish a barrier

between teacher and students due to large monitors that are directly in the line of sight

and input devices that need a lot of desk space. When every student uses a PDA-style

device, normal communication is preserved. Again, this is similar to the way standard

2Older Zaurus models have an ARM processor that runs at about 200 MHz, newer models have an
Intel XScale processor with 400 Mhz. All models have at least 20 MB of RAM and 10 MB as permanent
storage.

2 PLANNING 10

Figure 5: A Sharp Zaurus SL C-700 running Cinderella

calculators are used in schools. Additional interesting possibilities emerge when taking

into account that these PDAs can be networked wirelessly3; however, that is not the

focus of this work.

It should be noted that the current PDA models are not yet quite ready for use

in schools; they are still relatively expensive and fragile. However, the direction of

technological advance is clear, and it therefore makes sense to research productive

usages now. Current models, e.g. the Sharp Zaurus lineup, are advanced enough to be

used as prototypes and for initial on-site projects.

From a technical viewpoint, a PDA is more restricted than a normal PC. The screen

is small and has a small resolution, typically around 320x240 pixels4. However, be-

cause the screen is so small, there are many pixels per length unit, which makes exact

pointing at small user interface elements difficult. Also, the use of a touchscreen and

3The extension card on top of the PDA in figure 5 is a Wireless LAN compact flash card.
4The high-end model of the Sharp Zaurus series depicted here features a screen of 640x480 pixels.

This is not the norm, however.

2 PLANNING 11

stylus means there is only a single mousebutton and no mouse movement, since the

stylus can only be detected when depressed on the display. The processor is relatively

slow and the memory smaller5. Due to these more limited resources, less mouse events

are delivered than on a desktop.

The use of toolbars is awkward in this scenario as well. The screen space is much

too limited to waste much of it on a toolbar. Using a menubar instead works, but

requires too much exact pointing to be really comfortable. Using more than a single

window is not advisable, because the window manager on a PDA, if there is one at

all, is usually quite primitive. It is much harder to navigate from one window to the

next, and manipulating them is more difficult than on a desktop because of the exact

pointing required.

An important goal of sketch recognition on PDAs should be speed; the smaller

resources available here must be kept in mind while developing the sketch recognition

algorithms. Additionally, the sketching recognition should degrade gracefully when

events get lost or less of them arrive per time interval.

Really complex constructions are not feasible on such a limited device. There-

fore, directly recognizing strokes to geometric objects will be feasible for many of the

constructions that make sense on a PDA.

2.1.4 Graphics Tablet

A scenario we will consider with lower priority is that of a normal computer with a

graphics tablet attached. This is a peripheral device that detects the position of a pen

on a surface and also the intensity with which it is pressed onto the surface. They

usually have at least two buttons and a very high sampling rate and resolution.

We consider this scenario because it shares many characteristics with the previous

two: chiefly, the use of a pen on a surface as an input method. Therefore, while the

normal user interface is quite usable with a graphics tablet as well, sketch recognition

might improve the human-computer interaction. For example, not having to move the

5We currently consider the abovementioned 200Mhz of processor speed and 32MB of RAM the
absolute minimum requirements.

2 PLANNING 12

hand from the construction area to the toolbar to select another mode could save time

and be preferable to some users.

Technically, this scenario is very similar to the normal mode of operation: the

driver for the graphics tablet simulates mouse movements and button presses, and the

resources of the computer running the application are the same as without the tablet.

2.1.5 Traditional Pointing Devices

Finally, with low priority, we also consider whether the stroke recognition developed

for the other scenarios might also improve the user interface in desktop Cinderella

usage. Other applications usegesturesto initiate certain actions, e.g. opening a new

browser window; we will experiment whether something like that is useful for Geom-

etry Software as well.

It may be useful to distinguish between different classes of traditional pointing

devices. In addition to mice, trackpads are in widespread use on notebooks. Since they

are used with a single finger, the mode of operation seems similar to a pen-driven input

device. Some notebook manufacturers use small sticks in the keyboard as pointing

devices; it is probably not feasible to use any stroke recognition facility with those.

2.2 Typical Elements in Dynamic Geometry Software

In Dynamic Geometry Software such as Cinderella, we can expect to find the following

basic geometric elements. Elements have one output and inputs. For some types of

elements, the inputs completely define the element; others still have some degrees of

freedom.

Points

Free Points: These are the basic free elements. They have no input elements

and can be moved around freely.

Point on Road: A Point that is on another object, e.g. a circle, and can only be

moved on that object. It thus has an input object but can still be moved.

2 PLANNING 13

Intersections: A Point that is defined by the intersection of two input objects,

e.g., lines or circles. In general, there may be more than one intersection,

the disambiguation required can be viewed as another input.

Midpoints: A Point that is defined by two input points, lies on the connecting

line of the two inputs, and has the same distance to both.

Lines

By Two Points: A line that is defined by two input points. If the line is ren-

dered only between the defining points, this element can also be called a

Segment.

By Point and Angle: A line that is defined by a point and a slope. The input

point is incident to the line and the angle at that point is given to a fixed

reference axis.

Parallel: A line defined by a line and a point. The parallel’s slope is equal to

that of the input line. It passes through the input point.

Orthogonal: A line defined by a line and a point. The orthogonal has a right

angle with the input line. It passes through the input point.

Angular Bisector: A line defined by two lines. It is incident to their intersec-

tion point and has an equal angle to both. There are two possible angular

bisectors for any two lines, so the disambiguation can again be viewed as

an additional input.

Circles

By Midpoint and Border Point: A circle defined by two points, one is the cen-

ter, the other lies on the circle.

By Midpoint and Radius: A circle defined by a point and a radius.

By Three Points: Defined by three points that lie on the circle.

2 PLANNING 14

A Pair of Compasses:The output is a circle. It is defined by three points. One

of them is the center, the radius is given by the distance between the other

two.

Conic Sections by Five Points:Five points that lie on a conic section define it.

It is desirable to support as many of these objects as possible by recognizing them

directly from a stroke. It may be difficult to find adequate stroke descriptions for those

elements that are defined not only by other elements but also by a number, in particular

“Line By Angle,” “Circle By Midpoint and Radius.”

“Compass” is challenging because some of its input objects can lie far away from

the position of the output object. Conic sections are difficult because they can be

disjoint in the Euclidean plane, e.g., hyperbolas.

However, the others should be recognizable directly.

2.3 Evaluation of the Previous Scribbling Implementation in Cin-

derella

2.3.1 Capabilities

Professor Jürgen Richter-Gebert of TU München already implemented a Scribble mode

for Cinderella that works well for certain cases and has been demoed successfully at

various opportunities. However, it also has certain deficiencies that made a fresh look

at the problem seem a good idea.

To avoid confusion, the termScribbleJorScribbleJ modeis used to refer to Richter-

Gebert’s implementation. WhenScribblingis used alone, we mean the implementation

developed in this thesis.

We will first give an overview over the strokes that the ScribbleJ mode recognizes.

They are split into strokes that create a new object, listed first, andgesturesthat invoke

some other function of the software.

2 PLANNING 15

Points

Free Points: These can be scribbled as a shape that is confined to a relatively

small area. The area determines the size of a newly created point. There

is a list of permissible point sizes. Drawing a point-defining shape over

already existing points can increase their size; decreasing the size of points

is not possible.

Midpoints: Selecting exactly two points before drawing a point anywhere de-

fines a midpoint.

Lines

Segments:Drawing a scribble that is relatively straight creates a segment. The

end points are created implicitly if they do not exist.

Orthogonals: Directly after drawing a segment that intersects another segment

or line already in the construction, the area around the intersection can be

annotated with a small scribble that crosses both segments. This will make

the new segment a line that is perpendicular to the already existing line.

Parallels: Directly after drawing a segment, you can annotate first an existing

line or segment and then the new segment with a small, relatively straight

scribble. This will make the new scribble parallel to the already existing

element.

Arrows: Drawing an arrow-like stroke over a line will set the arrow of that line

close to the position the arrow was drawn.

Springs: Experimentally, code can be enabled that tries to recognize zig-zag-

lines as Springs, from thePhysics Simulationmodule of Cinderella.

Circles

By Midpoint and Radius: Drawing a scribble that is circle-shaped creates a

circle. The midpoint will be automatically added; if there is already a point

close to the new midpoint, that point is used.

2 PLANNING 16

Circle around an existing Point: Selecting an existing point and then draw-

ing a relatively circle-shaped scribble around that point results in a circle

around that point.

Gestures

Undo and Redo: Drawing a relatively horizontal line from right to left, span-

ning about a fourth of the window size, triggers an undo. Doing so from

left to right triggers a redo.

Selecting: Clicking on an existing element toggles its selection state. It is pos-

sible to select multiple elements this way. Clicking on an empty area of the

window deselects all elements.

Moving: It is possible to change the position of a selected point by dragging

it. The radius of a selected circle can be changed in the same way. This

is analogous to the regularMovemode when used on Circles defined by

Circle by Radius.

Delete some elements:Selecting elements and then using an Undo-Gesture de-

letes the selected elements, and all elements that are defined by those ele-

ments.

Delete all elements:Drawing a scribble that covers most of the window, and

that is not recognized as something else, deletes all elements.

While a stroke is drawn, the course of the pointer is drawn in red. This outline is

not shown anymore as soon as the stroke is processed. Figure 6 shows a screen shot of

ScribbleJ after a few elements have been sketched and a new circle is being drawn.

2.3.2 Advantages

The main advantage of this implementation is that it is functional and was available

when this work started. After an initial learning phase, most objects are recognized

2 PLANNING 17

Figure 6: A screenshot of ScribbleJ

as expected. We have also deployed the ScribbleJ mode on Zaurus PDAs, and with a

reasonably efficient Java VM it is usable there, too.

From the experience gained while using it, we can enumerate several aspects that

work well in ScribbleJ.

The way that the center point of scribbled circles is calculated places the center

close to where the user expects it. Limiting possible point sizes to a finite number of

sizes has the positive effect of making the drawing look tidy. Some of the rules are

intuitive, especially the way orthogonals and parallels are specified similar to the way

mathematicians annotate their manual drawings.

The gesture chosen for Undo and Redo is natural and works quite well once you

get used to it. The choices for selecting and moving points are both quick to execute

and rarely get in the way.

2.3.3 Problematic Issues

However, other aspects do not work so well. For one thing, it is somewhat difficult to

learn to use ScribbleJ.

One reason is that there are two mechanisms for specifying the relation of a new el-

ement to existing elements. Sometimes, elements must be preselected, sometimes they

2 PLANNING 18

must be annotated right after drawing the new element. These are not interchangeable;

the user has to know which mechanism applies to the specific situation, e.g., for a mid-

point the points must be preselected and for an orthogonal an annotation is necessary.

Another factor that makes ScribbleJ hard to learn is the lack of feedback; the user

cannot see what is going to happen before he or she lifts the pen. Since only completed

strokes are analyzed, someone learning to use ScribbleJ needs to draw many strokes to

get the “feel” of how to draw certain shapes.

The way annotations must be drawn is somewhat difficult to get right: they must

be drawn directly after adding the new element. If the first try fails, usually a short

segment has been inserted. The creation of this segment has to be undone as well as

that of the previous, correctly recognized element, to get a new try for an annotation.

Trying to recognize springs sometimes interferes with the recognition of ordinary

segments.

From a software engineering standpoint, the code is hard to extend due to the fact

that it is rather monolithic. It is also difficult to tweak recognition variables such as

the minimum length of an undo-gesture. This makes it impossible to have different

profiles for different usage scenarios or users. Because the interrelatedness of the vari-

ous recognizer-methods, it is difficult to selectively disable certain strokes or gestures.

Lastly, much logic is duplicated from the normal modes, and much code is in this class

that really belongs elsewhere, e.g. deciding how to redefine a segment to an orthogo-

nal.

2.3.4 Assessment of Relevance

Upon closer inspection, the existing scribbling code is not suitable as a basis for devel-

oping the sketch recognition envisioned in this work. This is mainly because the code

is neither easily understandable nor extensible.

It is, however, highly instructive both as a proof of feasibility and as a prototype. It

is clear that sketch recognition can work well with Geometry Software on pen-driven

devices, and fast enough on a PDA. We were able to draw valuable lessons from seeing

2 PLANNING 19

what works well and not so well in the current code. Also, we expect that some of the

algorithms developed for and used in ScribbleJ can be used in the future framework as

well.

2.4 Previous Work

2.4.1 Sketch Recognition

Mahoney et al. describe concerns for sketch recognition technology[7]. The three main

requirements they describe apply to this thesis as well:

1. It must cope reliably with the variability and ambiguity pervasive in sketches.

2. It must provide interactive performance or better.

3. It must offer easy or automatic extensibility to new shapes and configurations.

The focus of their work is on recognizing known configurations of elements, e.g. line

drawings of humans. Unfortunately, reliable algorithms run in exponential time and

are therefore not applicable to our problem domain.

Another difference is that we deal with only a few strokes at a time, and intend to

give immediate feedback, whereas the algorithms used by the authors analyze finished

drawings. Also, we do not want to recognize known configurations, but only known

shapes. However, we need the exact coordinates where the user drew them.

Quicksketchis a project at TU Ilmenau [22]. It is aimed at pen-based computers

and tries to recognize certain primitives from strokes. The system supports circles

defined by midpoint and radius, circular arcs, lines defined by two points, and B-

splines. Relationships between elements are deduced implicitly, e.g. a line is defined

as an orthogonal to another line if it is drawn almost perpendicular to the existing line.

It is possible to change elements after they were drawn by dragging on special control

points attached to the elements; dependent elements are then updated. Relations that

were found are maintained.

2 PLANNING 20

The main focus, however, is on 3D-models. Two-dimensional drawings can be

extrapolated into the third dimension or rotated around an axis.

Because the constructions are supposed to eventually define three-dimensional

bodies, the tool does not handle intersecting elements well. That simplifies recog-

nition, as it is easier to exclude possible meanings of a stroke. We need to handle

intersections however, as they are common in geometric constructions.

Another difference is that we have different ways to define elements, e.g. circles

by three points or by point and radius.

Igaraashi et al. describe a system that can automatically infer geometric constraints

from free-hand drawings [3]. The system handles only “vectors”, i.e. line segments in

our terminology. It can recognize such things as parallels, segments of equal length,

horizontal and vertical reflections and connections of vertices. These relationships are

inferred automatically by the system. Strokes are analyzed one by one as they are

drawn, just as we would like to do.

The end result of their algorithms is a drawing, not an interactive construction – it

cannot be changed afterwards.

One of the benefits of interactive geometry is being able to try what happens when

elements change, for instance, when two previously almost parallel lines are not par-

allel any more. Therefore, inferring relations is not appropriate for our purposes, we

must let the user specify constraints and consider those and only those.

One interesting feature of Igaraashi’s system is that multiple possibilities are gen-

erated for a stroke and the user is allowed to choose between them by tapping on the

non-primary candidates. This could be a worthwhile feature for our sketch recognition

as well, letting the user select the second-best candidate.

2.4.2 Gestures

The web browserOperawas the first widely used program to incorporategestures[21].

Its gesture-mode is activated by pressing a secondary mouse button; the movement

performed with the mouse while holding the button determines the action triggered.

2 PLANNING 21

Figure 7 shows some of the supported gestures, as presented on the website.

Figure 7: Sample Opera gestures

Without gestures, these actions could only be activated from the toolbar, the menu

or with a keyboard shortcut. That requires either moving the mouse a long way or

switching from mouse to keyboard and back. Therefore, the actions are quicker to

execute with a gesture.

Many Opera users like gestures and use them all the time; others prefer the tra-

ditional options. But since they are non-intrusive, i.e., it is unlikely to use them by

accident, gestures can be enabled by default. It should also be noted that gestures are a

feature targeted at experienced users: it requires reading and understanding documen-

tation, as well as some training, before it can be used.

Gestures have been widely copied; many browsers support them nowadays, at least

through a third-party plugin [12]. Other applications have also started to provide this

user interface [11].

They seem a worthwhile addition. The sketch recognition mechanism we imple-

ment should be able to provide gestures; we will keep the gestures shown above in

mind when deciding on the kinds of shapes to recognize. As for the concrete gestures,

the problem domain is too different to copy the operations.

2 PLANNING 22

2.4.3 Sketch3D

Sketch3D is a software aimed primarily at architects who wish to quickly visualize

three-dimensional structures [17]. From the description on the website, it seems to

offer sketch recognition to drawings.

In reality, its so-called “freehand mode” only allows the user to draw lines, how-

ever. Information about context, for instance when the new line is perpendicular to

existing lines or parallel to an axis, is given to the user while the line is drawn. For

other elements, such as circular arcs, different tools must be used. These tools are

selected from a toolbar.

In more complex constructions, the relations of new elements to existing elements

are not inferred correctly in all cases; in these cases, the elements that modify the new

element can be preselected. For example, to draw a line parallel to a line far away in

the construction, the other line must be clicked on before drawing the new line. The

user then gets hints when the new line is parallel to the existing line. However, the

relations established while drawing lines are not persistent; when the slope of a line

changes, those that were parallel originally are not changed along.

After studying the demo version, it becomes clear that the goal of this program

is too different from ours to emulate much of their user interface. Sketch3D aims to

produce an exact drawing of a three-dimensional idea, while we intend to produce an

exact mathematical construction.

2.4.4 Menus

It is possible to viewhierarchical context menusas a form of sketch recognition [9]:

on pressing a button, the user is presented with choices. The path then traversed by

the pointer determines which submenus are opened and which choice is ultimately se-

lected. This form of “sketch recognition” is more explicit because the possible choices

are listed and displayed on the screen. However, it fits our requirements of minimizing

the pointer movements necessary.

As visible in figure 8, there are some drawbacks: menus need a lot of space, require

2 PLANNING 23

Figure 8: An example menu, from the GIMP [13]

exact pointing and can distract the audience. However, as we will explain in section 5,

alternate types of menus have been proposed that alleviate these concerns and can be

used advantageously for our scenarios.

2.5 Decisions

Looking at the core objects definable in a Dynamic Geometry Software and the pro-

totype ScribbleJ implementation, it becomes clear that directly recognizing geometric

objects from strokes is feasible. It also is useful on pen-driven devices, because it re-

duces the need to change modes often. To ease learning, we want to be able to give

immediate feedback about the recognition to the user.

Gestures also look to be a promising way of enhancing the user interface on these

devices. They minimize the necessary pointer movement to effect an action. However,

it is not clear how to activate gesture-recognition on a device with only a single logical

mouse button. Both direct recognition and gesture recognition should be handled by a

single, flexible framework. Our version of such a framework,Scribbling,is described

in the next section, section 3.

Finally, hierarchical context menus are a way to present many options to the user,

more than can easily be recognized either through direct recognition or gestures. How-

ever, the traditional list-based context menus do not work well for pen driven-devices,

because deeper hierarchies make long pointer movements necessary. This also presents

2 PLANNING 24

a problem for devices with very limited screen space, such as PDAs.

Finding a good way to present such a hierarchical menu to the user without long

pointer movements and on a limited screen space can also be seen as recognizing

strokes. We describe previous work and our solution to this problem,Cinderella Flow

Menus, in section 5.

3 SCRIBBLING 25

3 Scribbling

By Scribblingwe mean a mode of operation in a Dynamic Geometry Software. In

this mode, the user draws freehand sketches that are analyzed by the software. The

action the user intended is inferred from the data in the scribble; it is then executed.

We envision multiple uses of Scribbling in Cinderella, e.g., recognizing geometric

constructions on a pen-driven device, or switching modes when using a mouse-like

pointing device.

In this section, we analyze the requirements for a Scribbling framework in a Dy-

namic Geometry Software and give an overview over the design and implementation

of such a framework for Cinderella. We then describe the different ways in which this

framework is currently used.

3.1 Requirements

From the information gathered in section 2, we summarize the following design guide-

lines for the new sketch-recognition framework:

1. We want to give immediate feedback to the user about what is recognized while

he or she is drawing.

2. Extensibility and flexibility in choosing recognized gestures is required, as we

want to accommodate different usage scenarios.

3. It should be easy to tune recognition parameters, e.g., for different users or dif-

ferent hardware.

4. Analysis needs to be fast, since we intend to run it on a PDA as well.

The first point implies that we have to run the complete analysis every time that the

platform sends us a mouse event. Therefore, an individual step of an analysis should

only takeO(1) time. If the runtime depended on the number of events already pro-

cessed, recognition would slow down the longer a stroke gets, which is not acceptable.

3 SCRIBBLING 26

Extensibility means that it should be possible to easily switch certain gestures on

and off.

There will be different stroke types that require similar sorts of analysis. Therefore,

the framework needs to accommodate the sharing of intermediate results.

Generally, we want the new code to be as independent of Cinderella as possible.

This is to reduce coupling, always good from a software-engineering standpoint, be-

cause this makes the code more maintainable and extensible. It also facilitates reuse;

maybe other projects want to use our code to implement stroke recognition facilities.

3.2 Core Design of the Framework

This section explains the design of the scribbling framework. Technical complica-

tions as well as some details that are irrelevant for the concepts have been omitted.

Therefore, the figures and explanations in this subsection do not accurately reflect the

implementation, but explain the core design.

The basic data collected during a stroke consists of the positions the pointer was at

and the time at which it was there. The classStroke stores the data of one stroke,

which we define as the sequence of events from mouse-button-down to mouse-button-

up.

Since flexibility is desired when choosing what to recognize in a specific use of

the framework, we represent one specific identification together with the appropri-

ate action in an interfaceAnalyzer . For performance reasons, we do not want ev-

ery instance of a subclass ofAnalyzer to recalculate intermediate results all the

time. Furthermore, there are intermediate results that can be used by more than one

Analyzer . Therefore, we introduce an interfaceDistiller . Classes that imple-

ment this interface are notified every time the pointer moves and update intermediate

results. Because intermediate results belong to the currentStroke , this class also is

responsible for intermediate results.6

6As an alternative design idea,Distiller s themselves could store their intermediate results.
Then, theAnalyzer s would have to know the concreteDistiller s attached to aStroke . Also,
Distiller objects could not easily be reused for newStroke s without losing their results for previ-

3 SCRIBBLING 27

The setup and correct invocation of instances of all these classes is handled by

an instance of aScribbleMode . A Mode in Cinderella is a class that can receive

mouse events and modify the state of the Cinderella kernel accordingly. Following the

Model-View-Controller pattern, aMode is thecontroller to theviewpresented by the

Cinderella GUI and themodelheld in the Cinderella kernel.

Cinderella
GUI

Cinderella
Kernel

1. send mouse-
up event

Scribble
Mode

2. updates

3. notifies
observers

Center
Distiller

Direction
Distiller

...
4. update
results

Line
Analyzer

Undo
Analyzer

Circle
Analyzer

5. asks
for

confidence

...

6. query
results6. invokes

most
confident

7.executes
action

8. updates

Existing
Program

Scribbling
Framework

Stroke
 intermediate
 results

Figure 9: Overview of control flow during a stroke

Figure 9 shows the control flow when everything is set up correctly and a mouse

event occurs – in this example, a mouse-up event. First, the GUI layer of Cinderella

sends a mouse event to theScribbleMode . TheMode updates its currentStro-

ke instance; this automatically notifies theDistillers that were attached to the

Stroke as observers, as per theObserverpattern [1]. EachDistiller updates

the current set of intermediate results with the new, appropriate values. In the figure,

only two Distiller s are shown: one that calculates the center point of the current

stroke, and one that tries to identify the major direction of the stroke.

After appending the new point to its currentStroke , theScribbleMode asks

all the Analyzer s in use for a confidence rating. This confidence rating is calcu-

lated by everyAnalyzer by querying intermediate results and doing only very little

ousStroke s. Since we support multi-stroke gestures, we chose the design described above, in which
the data is stored in theStroke .

3 SCRIBBLING 28

processing, since results that are only calculated inAnalyzer s cannot be shared.

The ScribbleMode then selects the most confidentAnalyzer and asks it to ei-

ther draw an icon indicating to the user what would happen if he or she ended the

stroke now, or it requests that theAnalyzer really execute the action, updating the

state of the Cinderella kernel. In the figure, only threeAnalyzer s are shown. The

LineAnalyzer is the most confident one, and since the event shown is one in which

the stroke is finished, it is asked to execute its action.

On a mouse-down event, theMode must set up an emptyStroke with all the

necessaryDistiller s attached to it.

Scribble
Mode

Center
Distiller

Direction
Distiller

4. asks for necessary
Distillers

ScribbleMode
Configurator

1. activate

3. get all possible
Analyzers

Deviation
Distiller

Line
Analyzer

Undo
Analyzer

Circle
Analyzer

Center
Distiller

Direction
Distiller

Direction
Distiller

Deviation
Distiller

5. calculates union

6. sets Analyzers
and Distillers
to be used

2. configure

Figure 10: Setup when a mode is activated

Initial setup of theMode is visualized in figure 10. It is accomplished with the help

of a ScribbleModeConfigurator . ScribbleMode itself is an abstract class

that is able to behave as previously discussed; the actualAnalyzer s to be used are

specified by concrete subclasses ofScribbleMode . When such a mode is instanti-

ated, aScribbleModeConfigurator is attached to it. On the first activation by

the main program, theMode asks theConfigurator to configure theMode. The

simpleConfigurator shown in the figure retrieves all possibleAnalyzer s – de-

fined in a subclass ofScribbleMode – from the mode. It asks all theseAnalyzer s

3 SCRIBBLING 29

for the Distiller s they need.Distiller s have a unique key; this is used to

calculate the set of all theDistiller s anyAnalyzer needs. This procedure en-

sures that intermediate results are shared. TheConfigurator then sets the actual

Analyzer s andDistiller s that the mode shall use.

This design allows for a high amount of flexibility: different concrete subclasses of

ScribbleMode can be used for e.g. a geometry scribble mode or a physics scribble

mode. AnAnalyzer only needs to declare theDistiller s it needs and can then

depend on their intermediate results being available.

DifferentScribbleModeConfigurators can be used for different purposes.

The basic one, shown in the figure, just activates allAnalyzer s theMode knows

as well as allDistiller s needed by anyAnalyzer . This Configurator is

suitable for normal operation. A differentConfigurator might be used during de-

velopment, one that allows activation and deactivation ofAnalyzer s at runtime. It

might also allow the tuning of recognition parameters of theAnalyzer s. Further-

more, it might be useful to have a specialConfigurator for PDAs that will only

activateAnalyzer s that do not depend onDistiller s that are too costly to run on

a limited platform.

Immediate feedback to the user is one of the design goals. Cinderella uses the con-

cept ofhints,graphical elements displayed byHinter s. AModecan attachHinter s

to the Cinderella GUI, and they will be asked to paint themselves anytime the window

is repainted. Regular modes often use a Hinter to give a preview of the element that

will be inserted.

Flexibility in giving feedback about what is happening to the user is desirable

so we can test different approaches. Therefore, aScribbleMode also has a list

of Hinter s that are currently active. TheMode is responsible for attaching the

Hinter s to the GUI layer of Cinderella and the currentStroke to theHinter s.

A Hinter declares whichDistiller s it needs – usually, it will only depend on

oneDistiller , the one whose intermediate result it visualizes. TheConfigura-

tor also sets theHinter s to be used when it configures aMode. In the simple case,

3 SCRIBBLING 30

shown in figure 11, it just activates all theHinter s whose requirements are currently

fulfilled. Again, more sophisticatedConfigurator s could selectHinter s based

on other context information. The development Configurator could also allow the user

to turnHinter s on and off at runtime.

Scribble
Mode

5. asks for necessary
Distillers

ScribbleMode
Configurator

1. activate

3. get all possible
Hinters

6. selects possible

7. sets
Hinters

to be used

2. configure

4. get current
Distillers

Best Ana.
Hinter

Center
Hinter

Area
Hinter

Center
Distiller

Direction
Distiller

Deviation
Distiller

"CenterD" "AreaD"

Best Ana.
Hinter

Center
Hinter

Figure 11: Setup of Hinters

Figure 12 shows the UML diagram of the core design. In addition to the classes

and operations described above, a classStrokePt is introduced to represent a single

position of the pointer on the screen. An additional interfaceStrokeObserver ,

used here only as a superinterface ofDistiller , makes the use of theObserver

pattern clear to everyone looking at the design or the code.

An Analyzer can have parameters, e.g., for theAnalyzer recognizing an

Undo-gesture, these might be the minimum length of the stroke or its maximum time.

To accommodate the adjustment of these parameters at runtime, we introduce the

methodssetParameter() andgetParameter() . An Analyzer must take

care of converting theString argument to the type actually used. Multiple param-

eters are separated by semicolons. If an illegal argument is given tosetParamet-

er() , theAnalyzer is expected to not change its parameters and log an error mes-

3 SCRIBBLING 31

<<interface>>
Analyzer

+setStroke(Stroke): void
+recalcConfidence(): int
+drawIcon(Graphics): void
+doAction(Kernel): void
+getNecessaryDistillers(): Distiller[]
+getParameter(): String
+setParameter(String): void

<<interface>>
Distiller

+getName(): String

Stroke
+addObserver(StrokeObserver): void
+addDistilled(key:String,data:Object): void
+getDistilled(key:String): Object
+addPt(StrokePt): void
+getPt(int): StrokePt
+size(): int

<<interface>>
StrokeObserver

+setStroke(Stroke): void
+update(StrokePt): void

0..*

1

ScribbleHinter
+setStroke(Stroke): void
+getNecessaryDistillers(): String[]
+drawHint(Graphics): void

ScribbleMode
+mouseEvent(MouseEvent): void
+getAllAnalyzers(): Analyzer[]
+getAllHinters(): ScribbleHinter[]
+setAnalyzers(Analyzer[]): void
+setHinters(ScribbleHinter[]): void

<<interface>>
ScribbleModeConfigurator

+configure(ScribbleMode): void

1

1

1..*

0..*

0..*

1

1

StrokePt
+position: Point
+time: long

0..*

Figure 12: UML diagram of the design model

sage.

A developmentScribbleModeConfigurator should also provide interac-

tive access to these parameters, to facilitate tuning and testing. For deployment, dif-

ferent profiles for different environments could be managed by specialScribble-

ModeConfigurator s; user profiles could also be managed through a properties-

awareConfigurator .

3.3 Implementation of the Framework

When implementing the design introduced above, some technical issues had to be

addressed. Instead of explaining every detail, we name the areas in the implementation

that differ from the design described above. The reader is referred to the source code

for more detailed insights [15].

3 SCRIBBLING 32

Since multi-stroke gestures are possible in principle – e.g., for annotating parallels

– a classStrokeSequence bundles multipleStroke s.

Moving elements is a special case because it is necessary to initiate an action –

moving an element and recalculating dependent elements – every time that the mouse

is moved, not only on button-up. There are other differences from the normal op-

eration as well, e.g., noHinter s are used. The concept ofBehavior s is intro-

duced to solve this issue. AScribbleMode has multipleBehavior s; on button-

down the one for the nextStroke is selected. The sequence of events discussed in

the previous subsection now is in the responsibility of the defaultBehavior , the

ScribblingBehavior .

The type of the intermediate results that aDistiller sets in theStroke is de-

pendent on the concreteDistiller . We adopt the convention that aDistiller

defines an inner class, an instance of which is added to the intermediate results. A

Distiller must also define a static method, usually calledgetData() , to re-

trieve an object of the correct type from aStroke . If the intermediate results are

complex, using a top-level class as intermediate result is also permissible. This con-

vention avoids problems when aDistiller changes something about the type of its

result object; it also avoids class casts inAnalyzer s. Analyzer s need not concern

themselves anymore about thegetDistilled() -method ofStroke , because the

concreteDistiller s provide a type-safe wrapper.

As an aid to development, theAnalyzer interface is expanded by agetParam-

Description() -method that returns aString suitable for displaying a reminder

about the format of its parameter.

SinceAnalyzer s sometimes recognize multiple possible objects, e.g. lines de-

fined by two points as well as parallels, we allow them to have an internal state. This

state is reset bysetStroke() and modified only byrecalcConf() . The behav-

ior of thedisplay() anddoAction() methods may depend on that state.

3 SCRIBBLING 33

3.4 Interactive Fine Tuning

In this subsection, the interactiveScribbleModeConfigurator is discussed. It

is mainly a development tool, but may also be useful to advanced users who wish to

tweak the settings of the sketch recognition.

For developing concreteScribbleMode s, it is highly useful to be able to activate

and deactivateAnalyzer s at runtime. Also, in order to developDistiller s and

their algorithms, specialized visualizations are valuable debugging aids. The concept

of ScribbleHinter s fits this need nicely; we therefore need to be able to turn

Hinter s on and off at runtime as well, so the display does not become too cluttered.

Figure 13 shows an example of aHinter that allows the developer to immediately see

whether the center distiller calculates the center satisfactorily. Of course, the display

is continuously updated while drawing, which increases this effect.

Figure 13: A Hinter visualizing the Center Distiller

Finally, tuning aScribbleMode is an interactive task: many different variations

must be tried to find out what works best on a given device. Therefore, setting the

parameters of the activeAnalyzer s should be supported as well.

The interactiveScribbleModeConfigurator opens a separate window that

allows tuning theScribbleMode independently of the main program. Figure 14

shows a screen shot of that window. In the top part, the activeAnalyzer s can be

chosen in a list that supports multiple selections7. TheAnalyzer s available here are

7The “deselect”-button is a workaround for a bug in some AWT implementations that do not allow
deselecting elements in such lists.

3 SCRIBBLING 34

Figure 14: The interactive ScribbleModeConfigurator

those that theMode returns ingetAllAnalyzers() ; initially they are activated as

pergetAnalyzersDefaultOn() .

The choice below selects theAnalyzer whose parameter can be edited in the

textfield. Shown in the figure is the parameter of theAnalyzer for the undo gesture.

Above the text field a short reminder of what the parameter means is presented; the

Analyzer returned this reminder from itsgetParamDescription() method.

Then, theDistiller s that the activeAnalyzer s need are listed. This list is

not modifiable nor selectable. In the bottom part of the window, theHinter s that

have their requirements fulfilled by the current set ofDistiller s are listed. As with

Analyzer s, multiple selections are supported and a “deselect”-button is provided.

The list of possibleHinter s is returned by theMode from getAllHinters() ;

their initial state is determined bygetHintersDefaultOn() .

Whenever anything is changed in this window, the mode is instantly updated ac-

cordingly. It is possible to select the activeHinter s even after a stroke is complete,

which is a rather useful feature while debugging.

3 SCRIBBLING 35

Currently, thisScribbleModeConfigurator is activated when a concrete

ScribbleMode is specified with “debug” as configuration parameter in the Cin-

derella configuration file. If the development of moreConfigurator s becomes

necessary in the future, a more sophisticated mechanism will be used.

3.5 Calculating Common Intermediate Results

3.5.1 Overview

In this subsection, we will explain the coreDistiller s that can be used by many

Analyzer s. Those are the ones that calculate results that are useful for recognizing

basic shapes, such as circles or lines.

3.5.2 Area Distiller

Information about the area a scribble moved over is useful for recognizing points, or

large gestures such as the delete-all gesture.

This distiller maintains the minimum and maximumx and y coordinates that a

stroke has traversed. It also calculates the percentage of the window’s width and height

that the stroke has spanned. Updating these bounds only takes four comparisons and

is thus not runtime-critical.

3.5.3 Center and Distance from Center Distiller

The information about the center point of the stroke is, of course, necessary for insert-

ing circles. It is, however, also used for other things, e.g., selecting elements.

This Distiller calculates thecenter point of the stroke, as well as the maxi-

mum, minimum and average distances from that center. The definition ofcenter point

is interesting; the naive approach is to simply calculate the arithmetic average of thex

andy coordinates of allStrokePt spt1to ptn:

center=
∑n

i=1 pti
n

3 SCRIBBLING 36

However, this leads to unintuitive centers, because the parts of the stroke in which

more events occur have a stronger influence on the result. The problem is that the

events are not always delivered in regular time intervals. Therefore, we adopt the ap-

proach also used in ScribbleJ: consider the midpoints between neighboringStroke-

Pt s. We scale these with the distance between the twoStrokePt s and take the

arithmetic average of these points:

center=
∑n−1

i=1 (pti+pti+1

2
) |pti, pti+1|∑n−1

i=1 |pti, pti+1|

It is possible to update this point inO(1) time by keeping the running totals of the

sums and not only the result.

Unfortunately, calculating the average distance of theStrokePt s from the center

requires iterating through all of them. This is because the position of the center changes

with every new event, which also changes the distance of every previousStrokePt .

Therefore, thisDistiller currently needsO(n) time forn points.

We also calculate the minimum and maximum distance of anyStrokePt from

the center. How far these are off from the average distance can give an indication of

how close to a circle a stroke is. This data can easily be calculated while calculating

the average distance.

3.5.4 Rotation Direction Distiller

A uniform rotation direction indicates a circle-shaped gesture.

ThisDistiller determines the direction in which the points rotate. This means,

whether the points, viewed from the center point calculated above, move only left

or only right. Another way to look at this is to determine whether the points are all

clockwise, all counter-clockwise or neither.

To do this, theDistiller calculates the relative vectors of all neighboring

StrokePt s to the center calculated by the CenterDistiller 8. It then calculates

8Therefore, thisDistiller depends on the CenterDistiller being available. A class using
the Rotation DirectionDistiller must ensure that the CenterDistiller is also available, and

3 SCRIBBLING 37

the cross product of those vectors for every two neighboring points. If the sign of this

cross product is the same for all neighboring pairs, the stroke has a single direction and

is thus possibly a circle.

In every step, we need to calculate one cross product and do one comparison. This

is in O(1) time per step.

3.5.5 Segmentizer

An important problem when analyzing strokes is finding segments, i.e., linear parts of

the stroke. ThisDistiller is probably the most importantDistiller included

in the Scribbling framework; it is also the most complex. While finding the segments,

it also calculates some information about the segments and the parts between them,

which can potentially be meant as points. The data calculated in thisDistiller

can be used by a wide variety ofAnalyzer s. It is of course suited to detecting

sequences of segments. Furthermore, it can be used byAnalyzer s such as the undo-

detecting one. It can check that only one segment was found and it is close to a westerly

direction.

TheSegmentizer finds stretches of adjoiningStrokePt s that are considered

linear. A stretch is linear if the distances from the start to the points projected onto the

line from start point to end point are always increasing. Figure 15 shows a stretch that

would be considered linear fromS to E; figure 16 shows one which is not linear.

The Segmentizer also calculates certain characteristics of both linear stretches and

non-linear stretches. For linear stretches, we keep two numberswestward and

northward that are between -1 and 1, that are an indication of the direction of the

line between the start point and the end point. They are obtained by calculating the

scalar product of the normalized vector from start to end and the vectors
(
−1
0

)
and(

0
−1

)
, respectively.

We also keep the maximum distance that a point deviated from the direct connec-

called before this one. An exception is raised if this assertion is not fulfilled.
Since this is the only instance of aDistiller-Distiller dependency, using assertions suffices

to ensure their fulfillment.

3 SCRIBBLING 38

|SQ1|= 1.23
|SQ2|= 1.8
|SQ3|= 1.92
|SQ4|= 2.81

S

P1

P2

E

P4

Q1

Q2 Q4

P3

Q3

Figure 15: A linear sequence

|SQ1|= 1.23
|SQ2|= 2.03
|SQ3|= 1.94
|SQ4|= 2.81

S

P1

P2

EP4

Q1

Q2
Q4

P3

Q3

Figure 16: A non-linear sequence

tion from the start and end points. That distance is scaled to the length of the direct

connection, so the allowed deviation is larger for longer strokes. This makes sense

because it becomes increasingly more difficult to draw the line straight the longer it

becomes.

For non-linear stretches, we keep the minimum and maximumx andy coordinates.

We also gather some data for the stroke as a whole: the maximum height and width

of a non-linear stretch and the maximum scaled deviation that a point in a linear stretch

had from the direct line.

Pseudocode for the Segmentizer is given in algorithm 1. The Segmentizer is in

one of two states: either a linear stretch is currently running, or not. Initially, it is

not. To switch to the line-running state, the distance between the points indexed by

lineStart andcur has to be larger than the threshold value,MIN_LINE_LENGTH.

If it is, lineStart is increased by one until the stretch fromlineStart to cur

is linear, orlineStart is equal tocur . If the distance between the points indexed

by the newlineStart andcur is still larger than the threshold, we have found a

linear stretch and switch state.

If the Segmentizer is currently in line-running state, it stays there as long as the

stretch fromlineStart to cur is linear. When it is not anymore, a line has been

identified fromlineStart to cur-1 .

While finding the stretches ofStrokePt s that are linear, we of course also find

the stretches in between.

This algorithm does not always find the longest possible linear stretches. It finds

3 SCRIBBLING 39

Algorithm 1 Pseudocode for the Segmentizer
class Segmentizer{

int cur = -1;

int lineStart = 0;

boolean lineRunning = false;

void update(){

cur++;

if (lineRunning){

if (!linear(linestart, cur){

lineFound(lineStart, cur-1);

lineRunning=false;

lineStart=cur-1;

}

} else {

if (distance(lineStart, cur) < MIN_LINE_LENGTH)

return;

while (!linear(lineStart, cur) && lineStart < cur){

lineStart++;

}

if (distance(lineStart, cur) >= MIN_LINE_LENGTH){

lineRunning=true;

}

}

// ...

}

those aboveMIN_LINE_LENGTH that occur first, as it does not backtrack once a

linear stretch has been found.

Determining whether a stretch ofn StrokePt s is linear requiresO(n) time,

since the projected distance must be calculated for all points between the potential

end points. Therefore, this algorithms takesO(n) time per update. The algorithm

above is efficient, however, in that it only looks at the last linear stretch and does not

reconsider olderStrokePt s. Hopefully, that will be enough to make it usable in

real-life scenarios.

The actual code is more involved than the pseudocode above, because we do not

know when the stroke ends. In effect, the data about found linear stretches and the

3 SCRIBBLING 40

properties of lines and points has to be kept in a way that the last update may have

been the last to come. Also, updating the additional information about linear and non-

linear stretches has to be done at multiple points in the code.

3.5.6 Traversed Objects

Knowing which objects have been traversed by a stroke is valuable context information

for many Analyzers, e.g. for defining a circle by three points.

This Distiller checks for every mouse event, whether any elementis hot at

that position. An elementis hot if it is displayed at that position. There are some ways

that an element can become unable to be hot; in general, if it is hot, it can be used

for defining subsequent elements. All the elements that were hot during the stroke are

saved in a list9.

This information can be used byAnalyzer s to modify the type of element they

create. E.g., a circle-like gesture that passed exactly three points could define a “Circle

by 3,” the circle that contains those three points, instead of the normal “Circle by

Radius,” which is defined by a center point and a radius.

3.6 Dropped Approaches

Some ideas seemed good in theory but were not useful enough in practice. For some

of these, this subsection explains why.

Timing-Based Segmentizer

In contrast to other projects trying to recognize drawings, we have information about

how and how fast the drawing was sketched by the user. It seems likely that it should

be possible to detect vertices, and thus find segments, in strokes such as the one shown

in figure 17 by examining the timing information – the user is slower near the vertices.

9All the otherDistillers discussed in this section have been programmed to be independent of
Cinderella; they could thus easily be reused in other projects. Of course, aDistiller that looks at
existing objects in the construction must interface with Cinderella directly. Therefore, thisDistiller
can only be used with Cinderella.

3 SCRIBBLING 41

Figure 17: A sketched sequence of segments

However, it turns out that the temporal resolution of many input devices, most no-

tably PDA touchscreens, is not high enough to yield information that is useful as the

sole indicator. After implementing additional recognition logic, as explained above in

subsection 3.5.5, it turned out that the other logic alone is quite sufficient for recogniz-

ing sequences of segments and thus the timing-based analysis was dropped.

Integrating Segmentizer

Another interesting idea is that vertex detection might be accomplished by integrating

the point sequence.

Figure 18: Averaging 11 neighboring points - Whiteboard

Figure 19: Averaging 11 neighboring points - Graphics tablet

3 SCRIBBLING 42

The easiest way to do that is averaging the discrete points we are given in the

mouse events. This is cheap to calculate, and the first results, as illustrated in figure

18, seem to confirm the idea – when the distance between a point on the white-black

line and the corresponding point on the green-blue line of averages becomes large, a

vertex is likely. However, this is greatly dependent on the timing – figure 19 shows a

polygon when drawn on a different device. The data is meaningless in this context. It

would be necessary to try averaging different amounts of neighboring points, negating

the advantage that this is fast to calculate. Furthermore, giving immediate feedback

would become much more difficult, because the best number of neighboring points

could change during the stroke. So, this approach yields interesting pictures but is not

really usable for our purposes.

Similar results and pictures can be obtained by integrating over the length of the

sketched outline. That is no longer timing-dependent, but takes longer to calculate – in

particular, a square-root operation is necessary for every segment of the outline. The

information gained also is not exact enough to really localize vertices correctly in all

cases.

The correct way really is to integrate over time – that way, the stretches of the

stroke where the user was slower are given a higher value. However, this is not fast to

calculate either. It also is not sufficient for vertex detection, because users sometimes

pause when they do not mean an edge and a practiced user hardly pauses at the vertices

when sketching a triangle, for example. Furthermore, this method requires sufficient

events to be valuable – more than we can rely on on PDAs.

In summary, while integrating is the “correct approach” from a mathematical stand-

point, the computationally simpler approach from subsection 3.5.5 is sufficient in prac-

tice.

Screen Size Covered

Initially, we used the screen size as a basis for the length of undo and redo gestures.

This has the advantage that a stroke that has been recognized on a device once will

3 SCRIBBLING 43

always be valid on that device, even when the window size is different. However, in

practice, the user intuitively links the required length for these gestures to the current

window size. Also, this could potentially make undo unusable in very small windows.

Thus this approach proved to be more confusing and was dropped.

Line

Originally, a separateDistiller was used to determine whether a stroke could be

considered a line. ThisDistiller calculated parameters like westwardliness and

maximum distance from the direct connection. The advantage of a separateDistil-

ler is that these somewhat expensive calculations are not made anymore once the

stroke clearly cannot be a single line. However, onceAnalyzer s started to require

directional information for linear stretches beyond the first one, this functionality was

put into theSegmentizer .

4 APPLICATIONS OF THE SCRIBBLING FRAMEWORK 44

4 Applications of the Scribbling Framework

In this section, we present the concrete applications of the sketch recognition frame-

work. In effect, an application of the framework is a set ofAnalyzer s; some that

can be used in different circumstances and some unique to the application. Currently,

there are three applications of scribbling: recognizing geometric objects, recognizing

physics objects and switching modes using scribbles.

4.1 ScribbleD– Recognizing Geometric Objects

4.1.1 Design Principles

ScribbleDis theMode that was the primary focus of the implementation. Its task is

the same as ScribbleJ’s: recognize geometric objects from scribbles. A description of

this Mode from the user’s perspective can be found in appendix A. This subsection

covers ScribbleD from a more technical standpoint. We describe the design principles

and theHinter s andAnalyzer s it uses. We then evaluate its capabilities.

As a general principle, preselection is used as a modifier for new objects. E.g., to

create a parallel, the line to which the new one should be parallel must be selected.

While this principle must be explained to a new user, it makes the mode consistent and

its behavior predictable.

TheAnalyzer s expose all the parameters that can be fine-tuned via the standard-

ized methods defined above. If there are multiple such parameters, they are separated

by semicolons in the parameter string.

4.1.2 Visualizing Progress with Hinters

Several Hinters are available for visualizing theStroke currently being drawn. The

BestAnalyzerHinter displays a small picture in the upper middle of the con-

struction area that shows a pictorial representation of the currently most confident

Analyzer . This is accomplished by calling itsdraw() method. ThisHinter

is always active; if noAnalyzer has a positive confidence, it displays nothing. After

4 APPLICATIONS OF THE SCRIBBLING FRAMEWORK 45

a timeout of 1.5 seconds after button-up, the picture is not displayed anymore. One

example of thisHinter in action is shown in figure 21 on page 48.

The outline of the stroke is displayed by theZebraHinter ; it alternates the color

of the lines betweenStrokePt s between black and white. This gives an immediate

feedback about the number of points that are processed. ThisHinter is always active.

A RedLineHinter is provided for those who prefer a quieter look. It is modeled

after the ScribbleJ interface; the start point of the stroke is marked by a small red point

and the outline is drawn in red.

Various Hinter s were implemented for debugging; some of them do produce

nice pictures, but they are of no relevance in practice. Interested users can access them

through the interactiveScribbleModeConfigurator , discussed in 3.4.

4.1.3 Selecting and Moving

Selecting and moving works the same way as in ScribbleJ. Clicking an element tog-

gles its selection state. If the button-down event occurs on a selected element that

is movable, noStroke is recorded, but the element can be moved around. Since the

Cinderella kernel decides whether an element is movable, this automatically works not

only with free points, but also with all other elements that can be used in the regular

“Move” Mode. E.g., circles that are defined by midpoint and radius, or lines that are

defined by point and angle can be changed.

To recognize clicking, a maximum time and a maximum length of the stroke are

configurable.

Moving is implemented as aBehavior of ScribbleD. This is necessary because

the normal processing of events must be inhibited.

4.1.4 Creating Geometric Elements

Circle

A circle is recognized when the rotation direction is uniform and the distance from the

first point to the last point is not larger than a parameter. Also, the difference between

4 APPLICATIONS OF THE SCRIBBLING FRAMEWORK 46

the minimum and maximum distances from the center point must be below a threshold.

To determine the type of circle to be created, thisAnalyzer looks first at the

preselected and then at the traversed points. If exactly three points on the circle were

found, the new circle is defined by those three points. If only one is found, a circle

through that point, and around another point, is created. If the calculated center point

is close to an existing point, that point is used. A preselected point may be further

away from the calculated center point to still be used as the midpoint of the new circle.

If no modifying points are found, a circle around a new point with the calculated

average radius is created.

Line

A line is recognized when theSegmentizer reports only one linear stretch and the

end points as reported by theSegmentizer are smaller than a maximum size. The

maximum deviation of a point in the linear stretch from the direct connection of the

end points may not be too large.

The type of line depends on the preselection; if a line is selected and the stroke

is relatively parallel or relatively orthogonal to that line, a parallel or orthogonal is

created. If the stroke went through an existing point, that point is used as the point still

needed for definition. Otherwise, for parallels the center point of the stroke is used or

for orthogonals, the intersection point with the existing line is used. The maximum

permissible deviation of the angle of the new line to the existing line from 0 or 90

degrees is controlled by a parameter.

If two lines are preselected and the stroke moves from one of the sectors defined

by those two lines to the opposite sector, an angular bisector will be inserted.

If none of this applies, a line through two points is created. Preexisting points close

to the stroke are given priority; when not enough are found, new points at the beginning

and end of the stroke are created and used. If the line spanned a large fraction of the

window (by default, 80%), it is created as a line that extends to infinity; otherwise, it

is rendered on the screen as a segment between the defining points.

4 APPLICATIONS OF THE SCRIBBLING FRAMEWORK 47

Figure 20: Recognizing lines

If new points are created, their size depends on the size of the relevant part of the

scribble. The legal point size is determined as for points, see there.

Figure 20 shows three example strokes and the lines defined by them. The one

on top is just a simple line; the end points are of the minimum size. The middle one

has explicitly drawn end points, and the newly created points reflect the size of the

scribbled end points. The bottom scribble illustrates that because of our definition of

linearity, curved scribbles are accepted as lines as well. The curvature shown here is

about the maximum allowed by the default whiteboard parameters, a more strongly

curved line would have a too large maximum distance from the direct connection.

PolyLine

This Analyzer recognizes line sequences that are connected. This is often desired

to draw polygons such as triangles. The work is mainly done in theSegmentizer ;

thisAnalyzer only checks whether the maximum deviation of a line from the direct

connection is below a threshold and whether the maximum point size is acceptable.

Both of these values are parameters. For the case of a single line, thisAnalyzer

defers to the lineAnalyzer . Figure 21 shows a few examples of polylines recognized

correctly.

4 APPLICATIONS OF THE SCRIBBLING FRAMEWORK 48

Figure 21: Recognizing polylines

The vertices are first consolidated, so that close vertices are created as a single

point. Then new points are created for those vertices where no existing point can be

found in the construction. Finally, the connecting lines are created, always cut off at the

defining points. If the final consolidated point equals the first point, a polygon element

is also created; this gives the effect of filling the polygon with color. The newly created

points always are of default size; otherwise, the new line sequence looks rather untidy.

The way that linearity is defined by the Segmentizer implies that obtuse angles

cannot be reliably recognized, as visualized in the top example of figure 22. However,

this can be overcome by drawing the points explicitly as shown in the bottom example

4 APPLICATIONS OF THE SCRIBBLING FRAMEWORK 49

of that figure.

Figure 22: Polylines with obtuse angles

Point

A stroke that remains confined to a small area and is not recognized as anything else

is recognized as a point. Its size is one of the legal sizes, determined by the area the

stroke covered. If there already is a point at the same place, its size is changed.

If two points are preselected and the new point is close to the midpoint of those, a

midpoint is created.

4.1.5 Gestures

Undo / Redo

TheAnalyzer s for undo and redo look for strokes that took longer than a minimum

time but not longer than a maximum time, are relatively horizontal and linear and also

span a higher percentage of the window than a threshold. All of the mentioned values

are configurable as parameters.

This gesture conflicts with drawing lines. However, short lines are not affected.

Drawing long lines usually takes longer than the time threshold, because the user is

drawing them more exact than a quick undo-gesture. Therefore, the two Analyzers

normally function together well.

4 APPLICATIONS OF THE SCRIBBLING FRAMEWORK 50

New Construction

A clear-all gesture is recognized when a large percentage of the window is covered by

the stroke, yet it is executed quickly. Traversing many objects increases the confidence

of this Analyzer.

Inspect Properties

A gesture that has two linear stretches, the first one relatively southward and the second

one relatively northward, is executed within a certain time and whose end point is close

to its start point is recognized as a request for information.

Currently, the CinderellaInspectoris opened as a result. This component allows

the inspection and manipulation of properties elements export, e.g., their color.

Right Click

The inverse gesture to the Inspect gesture, i.e. north then south, simulates a click of

the right mouse button. This is useful in environments in which there is no right mouse

button. What happens then depends on the Cinderella configuration; a context-menu

could pop up or a menu could allow the selection of actions not possible through pure

scribbling.

Rename

A double click allows the user to change the name of the element that is double-

clicked. This is implemented in anAnalyzer for non-movable elements; however,

the click on a movable, selected element triggers the moveBehavior . Thus, the

moveBehavior also had to be adapted to allow this feature, which creates a closer

coupling between it and the double-clickAnalyzer than is really desirable.

4 APPLICATIONS OF THE SCRIBBLING FRAMEWORK 51

4.1.6 Evaluation

The scribbling mode works as intended on both whiteboards and PDAs. The imme-

diate feedback functions as envisioned: at all times, a pictorial representation of the

action that would happen if the stroke ended now is displayed. Tuning recognition

variables via the interactiveConfigurator allows searching for good defaults on

the whiteboard; it is of less use on the PDA as it opens a second window. However, it

turns out that the whiteboard configuration is functional on the PDA as well.

Most of the functionality of ScribbleJ is supported by ScribbleD as well. A notable

exception are the annotations of lines directly after drawing them. This is not supported

because redefining existing elements is not trivial, and not yet possible in the “regular”

(non-scribbling) Cinderella. Therefore, the infrastructure is not present. Implementing

that infrastructure requires more knowledge of Cinderella internals than the author of

this thesis currently has. Arrows, too, are not yet included because modifying the

arrows of an existing line has no easily usable interface. When these shortcomings

in Cinderella core code are addressed, this functionality should be relatively easy to

implement.

Deleting elements is not yet supported; reusing the undo gesture as ScribbleJ does

would be possible but is somewhat confusing.

4.2 ScribbleP– Interfacing to Simulations

4.2.1 Goal and Design

ScribblePaims to allow the user to sketch physical experiments, insofar as supported

by Cinderella. This is a separateMode from ScribbleD because it is rarely useful to

mingle geometric and physics objects in the same construction. Using a secondMode

also means that scribbles can be reused for other elements, which facilitates both the

implementation and the actual use.

Physics in Cinderella is not calculated mathematically correct as the geometry part

is. Instead, elements can be assignedsimulation behaviors. When the user starts

4 APPLICATIONS OF THE SCRIBBLING FRAMEWORK 52

the simulation, these simulation behaviors determine how elements move from one

time step to the next. When the user stops the simulation, the elements return to the

position they had before it started. The simulation therefore is discrete and only useful

for visualizing experiments. It is less useful for actually calculating how elements will

behave. In particular, it is fairly easy to create a situation in which the computational

accuracy is not sufficient and elements behave differently from how the things they

simulate would in the real world.

4.2.2 Similarities to ScribbleD

The ScribbleP application of the stroke recognition framework is similar to ScribbleD:

new objects can be created and manipulated. Therefore, theBehavior s and some

of theAnalyzer s can be reused here. In particular, selecting and moving elements

stays just the same. We also keep the gestures for deleting all elements, for undo and

redo, for inspecting properties and for simulating a right button click.

4.2.3 Creating Physics Elements

Free Mass With Velocity

A new element is the “Free Mass With Velocity.” It can be scribbled by drawing a point

above a certain minimum size and then a line. The line is interpreted as the velocity

vector of the mass. When the mass is drawn on top of an already existing mass, that

mass’ velocity is replaced with the new one.

Technically, we rely on theSegmentizer and check the relevant point sizes and

number of linear stretches.

Figure 23: Scribbling a “Free Mass With Velocity”

4 APPLICATIONS OF THE SCRIBBLING FRAMEWORK 53

Bouncers

“Bouncers” are walls: masses will deflect of them, but they themselves are immovable,

as shown in figure 25. ScribbleP recognizes bouncers similar to the way ScribbleD

recognizes polylines. Any scribble that has linear stretches that do not deviate too far

from the direct connection can be recognized as a sequence of bouncers, see figure 24.

The points between the bouncers are always created in a small size and black color.

Figure 24: Scribbling Bouncers

Figure 25: The effect of Bouncers

Sun

A “Sun” is similar to a “Free Mass With Velocity” in that it has a mass and attracts

other masses. However, its mass is so high that it does not actually move when the

simulation runs. It can be defined by scribbling a small circle, above a minimum size

and below a maximum size.

The circle is recognized just as in the circleAnalyzer for ScribbleD.

4 APPLICATIONS OF THE SCRIBBLING FRAMEWORK 54

Floor

A “Floor” is a horizontal line that stops any physics elements. Moving masses will

bounce off it. A Floor has an inherent friction. Recognizing a floor is fairly easy: a

relatively horizontal line that spans much of the window, as determined by suitable

parameters.

Springs

“Springs” are segments that try to maintain their initial size when the simulation is

running. When the point at one end of the spring is moved, the other one moves

accordingly. They can be stretched and compressed a bit, like springs in real life.

To scribble one, the user must sketch a linear scribble that zigzags over the direct

connection of the start and end points multiple times, as shown in figure 26. The

masses at the end points are created if they do not exist yet.

Figure 26: Scribbling a Spring

Rubber Bands

“Rubber Bands” are very similar to Springs. They are like Springs that try to reach a

size of zero. In effect, the masses at their two ends are drawn towards each other.

To scribble one, an oval must be drawn that starts and ends at one of the points. We

check that there are exactly two linear stretches, that the rotation directionDistiller

says that it is monotone and that the start and end points are close to each other. This

gesture is similar to drawing a rubber band around the two masses. These will be

created if they do not exist yet, as shown in figure 27.

4 APPLICATIONS OF THE SCRIBBLING FRAMEWORK 55

Figure 27: Scribbling a Rubber Band

4.2.4 Starting and Stopping the Simulation

In the current user interface of Cinderella, running a simulation is a separateMode.

It must therefore be selected from the toolbar or the Menu; this starts the simulation.

Stopping the simulation again is accomplished by selecting a differentMode. This

clearly is not suitable for ScribbleP, because the normal way to switch modes with the

toolbar is not available. Instead, we adapt the Cinderella concept ofPort Buttons,small

rectangular areas that are displayed as regular elements in the construction. They can

perform an action when clicked on in “Move” mode. To enable port buttons in scrib-

bling Modes, theAnalyzer responsible for selecting elements had to be modified to

first check if the clicked element is a port button, and if so, execute its action instead

of toggling selection state.

A “Play Button” is created when the user scribbles a triangle with a vertical edge

and the third vertex to the right of that edge – just like the pictogram on any play button

on a real-world consumer device. When clicked on, that button switches the primary

Mode between ScribbleP and Simulation; this gives just the desired effect of allowing

the user to start and stop the simulation at will without resorting to toolbar or menu.

The triangle is recognized using theSegmentizer . We check that there are three

linear stretches, that they have the correct slope and that the end point is close to the

start point. Figure 28 shows how to draw a play button.

4.2.5 Evaluation

ScribbleP is not yet as mature as ScribbleD. Its capabilities are somewhat limited and

some of the recognition algorithms may need further tweaks. However, it is already

possible to scribble most of the physical elements incorporated into Cinderella. Cre-

ating and running an experiment such as the planet simulator shown in figure 29 is

4 APPLICATIONS OF THE SCRIBBLING FRAMEWORK 56

Figure 28: Scribbling a ”Play Button”

reasonably straightforward and possible without ever having to move the pointer a

long distance over the screen.

Figure 29: Simulating the orbits of two planets

More importantly, ScribbleP proves that the term “framework” is justified for our

Scribbling infrastructure. Implementing ScribbleP took no longer than three working

days, and much of that spent figuring out how to correctly interface to Cinderella’s

physics module. Much of the existing code, in particular theDistiller s, was

reused. The interfaces proved flexible enough to allow even peculiar functionality

such as the Play-Stop-Button.

4.3 Mode Switching

This application of Scribbling lets the user switch the mode using gestures, when press-

ing the middle or right button. In this way, all the traditional Cinderella modes such as

4 APPLICATIONS OF THE SCRIBBLING FRAMEWORK 57

creating lines or circles, can be activated without reaching for the toolbar or menu.

The functionality is implemented as aMode that allows the switching of the pri-

maryMode by using gestures. Cinderella was extended to support of secondary and

tertiary Modes, activated using the middle and right mouse buttons10, respectively.

TheScribbleModeSwitcherMode is designed to be configured as secondary or

tertiaryMode and then allows rapid switching of theMode used with the left mouse

button.

For this mode, a newHinter was implemented that darkens the window while

the mouse button is pressed and leaves a transparent white trace of the pointer, so the

user can see what he or she draws.

Additionally, anotherHinter observes the primary mode and, whenever the pri-

mary Mode changes, displays and fades the name of the new mode at the top of the

construction window, as shown in figure 30. This ensures that the user gets feedback

about the new mode, because it is not certain that a toolbar that contains the new mode

is displayed.

Figure 30: Visualizing mode switches

The available primary modes are grouped and anAnalyzer is specified for the

group. Whenever thatAnalyzer recognizes the gesture, the primary mode is set to

the first mode of the group. Relatively horizontal lines to the left and right select the

previous and next mode in the group, respectively.

10Modern operating systems allow their users to switch the left and right mouse buttons, primarily
for the benefit of left-handed users. So to be exact, we should be speaking of secondary and tertiary
mouse buttons; however it is slightly confusing that the tertiary button is physically situated between
the primary and secondary buttons. Therefore, we will continue to just use the somewhat inexact terms
of left, middle and right mouse buttons.

4 APPLICATIONS OF THE SCRIBBLING FRAMEWORK 58

The mode switcher is configured via the central Cinderella configuration file. There-

fore, different configurations are possible depending on the modes possible in the sce-

nario.

Because the recognition routines implemented for ScribbleD can be reused, creat-

ing Analyzer s for new groups for the mode switcher is fairly straightforward.

5 FLOW MENUS 59

5 Flow Menus

Flow Menus are an alternate way to present menu choices to the user. This section

discusses first the previous work that our flow menus evolved from, then the design

and the implementation of our version of flow menus,Cinderella Flow Menus. We

then introduce the application of these menus in Cinderella.

5.1 Previous Work

Many applications usecontext menus.These menus pop up at the current position of

the pointer and display a list of actions pertaining to whatever is at the pointer position.

They are most often activated by the press of the right mouse button. Context menus

have become almost universal, and are usually organized as a vertical list of options.

The advantage of context menus over other user interface elements is that the user can

select the desired action at the focus of attention, without moving the pointer far.

Pie Menuswere introduced in the late 1980s [14]. They are a kind of context

menu, but the menu items are arranged radially around the pointer position. Their

advantage is that the distance to all of the options is equal. The pointer movement

can be less exact, since every menu item has a larger area of the screen allocated to it.

Furthermore, after a few interactions, the user will learn the directional gesture needed

to select a certain option.

Pie Menus can be hierarchical, the selection of an option becoming the start point

for a further selection. More complex zigzag gestures correspond to these nested menu

items. The user will learn these more complex gestures, too. Many implementations

of pie menus do not display the menu immediately, but only after a timeout.

Quikwriting was proposed as an alternative input method for PDAs, particularly

Palm Pilots [9]. It is similar to pie menus in that it uses radial selection as a way to

distinguish choices. The area used for character input is divided in several zones: one

central zoneand eight radialouter zones. A character is selected by dragging the pen

from the central zone to an outer zone, possibly to another outer zone, and then back to

5 FLOW MENUS 60

the central zone. The outer zone entered from the central zone determines three or five

possible characters that can be the outcome of this stroke. If the pen is moved right

back to the central zone, the middle one of those characters is selected. If it is moved

one zone clockwise, the next character to the right of the middle one is selected, and so

on. Figure 31 (from [9]) illustrates the entry of the single letter “f” and the word “the.”

To input multiple characters, the pen does not have to be lifted off the input area; the

return to the central area at the end of one character can be the start for the next.

Figure 31: Quikwriting an “f”’ and the word “the”

In the top and bottom outer zones, various cursor control commands and shifts to

different character sets, e.g., capital characters and punctuation, are located. Text entry

using quikwriting is fast, also because users learn common words as a gesture. The

letters are arranged such that common letters require less movement than rarer ones.

Flow Menuscombine pie menus, quikwriting, direct manipulation and a system

for continuous parameter entry [2].Direct manipulationmeans that when the option

“Move” has been selected, the selected element can be immediately moved without

lifting the pen.Continuous parameter entryis achieved by using the outer ring of zones

as a virtual knob, changing the value every time the pointer crosses a zone boundary.

They have been developed for theStanford Interactive Mural,a system similar to

the whiteboards we focus on, only larger. The basic idea is that the user can execute

almost any action as one continuous stroke of the pen. Flow Menus are different

from pie menus in that an action is executed when the pointer returns to the central

area, rather than when the mouse button goes up again. Submenus are selected when

5 FLOW MENUS 61

the pointer moves from the central zone to an outer zone, or the other way around.

Gestures for nested commands therefore look like the ones for Quikwriting.

5.2 Adaptation for Cinderella

These types of context menus fit the goal of this thesis quite well: they provide a

gesture-based, quick and intuitive way to select from multiple options. They are well

suited for pen-driven devices, much more so than traditional context menus that require

exact pointing and dragging.

We call the type of radial menus that we implementedCinderella Flow Menus,

because they share most of the characteristics with the Stanford flow menus.

Some design decisions of Cinderella flow menus differ, however. We adopt the

rule that a menu item in a Cinderella Flow Menu is only selected when the pointer

returns to the center zone. A submenu, however, is activated when the pointer crosses

the boundary between the center zone and another zone, in any direction.

Once a Cinderella Flow Menu has been activated, we do not care about the state

of the mouse buttons anymore. This improves handling on interactive whiteboards,

because this behavior enables the user to navigate a flow menu without keeping the

pen pressed to the board. To cancel a menu selection, the pointer can be moved farther

away from the menu than twice its radius.

The menus themselves are implemented in a way that allows an arbitrary number

of items in the menu. However, usually we will stick to having eight outer zones, as in

the Stanford implementation.

Incorporating “direct manipulation” does not seem necessary, as Scribbling already

allows moving objects. In contrast to the Stanford implementation, which displays the

selected choices from all parent menus, we always show only one level of menus and

highlight the current selection.

5 FLOW MENUS 62

MenuCircle
+setEntries(FlowMenuItem[])
+addMenuCircleListener(MenuCircleListener): void
+drawMenu(Graphics,x:int,y:int)
+mouseDragged(MouseEvent): void

<<AWT Component>>
QuikWriting

+QuikWriting(output:TextField)

<<interface>>
MenuCircleListener

+regionChanged(newRegion:int,oldRegion:int): void

FlowMenu
+draw(Graphics,x:int,y:int): void
+init(FlowMenuItem[]): void
+isMenuActive(): boolean
+mouseDragged(MouseEvent): void

FlowMenuItem
-label: String
+display: FlowMenuView
+FlowMenuItem(label:String,action:FlowMenuAction)
+FlowMenuItem(label:String,subItems:FlowMenuItem[])

<<interface>>
FlowMenuAction

+action(item:FlowMenuItem): void

<<interface>>
FlowMenuView

+getBoundingBoxSize(): Dimension
+display(Graphics,left:int,bottom:int): void

FlowMenuActionAdapter
+action: CindyFunction

InsertChar
+textfield

<<Cinderella Mode>>
FlowMenuMode

0..1
0..1

0..*
normally:
0 or 8

1..*
normally: 8

1 1

1..*
normally: 8

1

0..*

Figure 32: UML diagram ofCinderella Flow Menus

5.3 Design and Implementation

Figure 32 shows a slightly simplified UML diagram of the Cinderella Flow Menu

implementation.

One option in a menu is represented by an instance of the classFlowMenuItem .

A FlowMenuItem can be a submenu; in this case, it has several submenu items. If

it represents an action, it does not have submenu items, but aFlowMenuAction .

A FlowMenuItem in any case has a label. This label is sufficient to display the

item to the user. If an item needs specialized rendering, it may have an object of type

FlowMenuView .

These classes discussed up to here, exceptFlowMenuView , constitute the model

of a Cinderella Flow Menu.

The classMenuCircle is the view that can display a set ofFlowMenuItem s.

It can handle an arbitrary number of items. The first item is drawn in the “north” zone,

5 FLOW MENUS 63

the others follow in mathematical positive direction. The numbering is shown in figure

33 for the normal case of eight outer zones and in figure 34 for three outer zones.

Figure 33: 8 outer zones Figure 34: 3 outer zones

The currently selected item, i.e., the one the pointer is over, is highlighted. The

MenuCircle is responsible for drawing the items at the correct positions; if an item

has a customFlowMenuView , that is used for the actual rendering. TheMenu-

Circle communicates zone changes of the pointer via theMenuCircleListener

interface. When determining which zone the pointer is in, it ignores the state of the

mouse buttons, only the position is considered.

FlowMenu , which implements the listener interface, is the controller. When its

MenuCircle reports a zone change, it checks whether a submenu was activated,

and if so, updates the entries in theMenuCircle accordingly. If the zone change

means that an action was selected,FlowMenu executes that action and will afterwards

return false from itsisMenuActive() -method. TheFlowMenuItem s given to

FlowMenu in the initializing method represent the top-level menu. AFlowMenu

also provides a specialFlowMenuItem that is displayed as an empty string and can

be used to move up one level in the menu hierarchy.

Currently, two different classes use aFlowMenu . The first is theFlowMenuMode ,

which is aMode in the Cinderella sense. It initializes aFlowMenu and installs a

Hinter to display theFlowMenu . It then grabs all mouse events until theFlowMenu

reports itself as no longer active. This can happen when an action has been selected or

5 FLOW MENUS 64

when the pointer moves too far away. TheFlowMenuMode utilizes a realization of

FlowMenuAction calledFlowMenuActionAdapter to link flow menu actions

to Cinderella actions and mode switches.

The other class usingFlowMenu is the one implementing quikwriting, called

QuikWriting .

5.4 Flow Menu Applications

5.4.1 Mode Switching

Figure 35: Switching modes Figure 36: A modes-submenu

This application uses a Cinderella Flow Menu to allow switching the primary

Mode. An instance ofFlowMenuMode is configured from the central Cinderella

configuration file. In the file, the possible modes are divided into submenus, with the

most often used modes requiring shorter strokes. This instance ofFlowMenuMode

is configured as secondary or tertiary mode, so that it can be activated with the middle

or right mouse button. Figure 35 shows the top-level menu when activated on a PDA.

When the user then moves the pen from the center to, e.g., the “lines” menu item, the

appropriate submenu is activated, as shown in figure 36. Moving the pen back now

activates the highlighted menu entry “by two lines” and will change the primaryMode

to creating lines defined by two points.

5 FLOW MENUS 65

Flow Menu Mode Switching can additionally be activated via a menu item, if only

one mouse button is available on the platform. The menu item simulates a right click in

the middle of the screen, activating theFlowMenuMode . Since theFlowMenuMode

then grabs all mouse events until something has been selected or the menu has been

canceled, this works even on a PDA where the subsequent mouse events will be gen-

erated with the primary button down.

5.4.2 Quikwriting

We support quikwriting as a platform-independent, alternate way of entering text.

To the user, Cinderella quikwriting presents itself similar to the original quikwriting

shown in figure 31, but using Cinderella Flow Menus as introduced above.

We currently use the Cinderella quikwriting component in the window that allows

a user to edit the label of an element. A screenshot of this is shown in figure 37.

Here, quikwriting is used on a PDA to rename the midpoint of the circumference of

the triangle.

Figure 37: Using QuikWriting

The Cinderella quikwriting component uses aFlowMenu . It is an AWTCompo-

nent that is suitable to be added into any AWT container. In its constructor, it is given

a TextField that receives the text that the user enters viaQuikWriting . Quik-

Writing uses anInsertChar realization ofFlowMenuAction . This action

5 FLOW MENUS 66

inserts a character at the current caret position into a text field. The component also

uses some other actions that are not shown in the UML diagram, e.g., to move the

cursor or simulate a backspace.

The top-level menu items are rendered with a specializedFlowMenuView , so that

the characters appear in a circle. How the characters are distributed depends on inter-

nationalization, the English version uses the same layout as [9]. The German version

currently does as well, but has the umlauts added in previously unused positions. It

may be better to redistribute the letters according to their frequency in each language.

5.4.3 Context Menu / Inspecting

A flow menu is also a good replacement for the context menu that Cinderella normally

uses, at least in environments in which windows are awkward. However, the necessary

changes in the infrastructure to allow us to construct a context-sensitive flow menu are

not yet complete.

We could use a flow menu to display and change the properties of any visible

object. E.g., the color of a point could be changed or whether lines should be cut off

at the end points or continue to the end of the window. TheFlow Menu Inspectoris

currently in development stage, as the mechanisms in the Cinderella kernel that allow

generic inspection of elements are not yet in place.

However, a proof of concept already works. In figure 38, a line already has been

selected and the user executes the “Right-Button-Click” gesture. For this example,

Cinderella has been configured such that the Flow Menu Inspector is activated by the

right mouse button. After navigating to “Appearance” and “Line Color,” the desired

color can be selected as shown in figure 39. The result can be seen in figure 40.

5 FLOW MENUS 67

Figure 38: Activating the flow menu Inspector

Figure 39: Selecting the desired color

Figure 40: Result

6 RESULTS 68

6 Results

In this last section, we revisit the target scenarios and analyze whether the work done

improves them. We then present ideas for future work before concluding this thesis.

6.1 Evaluation of the New User Interface

6.1.1 Presentations with Digital Whiteboards

Figure 41 shows a picture of the new version of Cinderella used with a Numonics

Whiteboard. The differences to figure 4 on page 1 are visible even on a small pic-

ture like this: the toolbars are gone. Instead a large, uncluttered construction area is

presented. The presenter and the audience can concentrate on what is actually being

constructed.

Figure 41: A Numonics Whiteboard with Cinderella and ScribbleD

The new ScribbleD mode works well in this scenario. Today’s laptop computers

are easily powerful enough to quickly run the calculations involved for recognizing

all of the geometric objects we currently support. After a short introduction, users are

able to scribble the constructions they envision. Interacting with the large, projected

6 RESULTS 69

construction soon feels natural. The new mode allows an interaction as we envisioned

before, simply drawing what one wants to see with ScribbleD recognizing the intention

and producing an exact, interactive image.

It should be noted, however, that ScribbleD is not usable without initial directions.

This is not a big problem, however, because in this scenario of giving a lecture or talk,

only the lecturer needs to know how to use it. Although audience members could not

immediately use scribbling, they are not confused by the presenter’s actions because

they look natural.

Scribbling mode therefore is primarily targeted at experienced users. It should

be noted that use of such advanced techniques increases the gap between presenter

and audience. This is not a problem in talks, where there is a clear separation of

roles anyway. However, this effect should be considered in tutorial-like situations like

workshops or classrooms. Usability studies are required to decide how much of a

problem this is.

Because we can enable antialiased graphics in the Java environment and use double-

buffering without using too much memory, the image on the whiteboard looks nice.

For whiteboard use, we usually configure the right mouse button to display the

mode-switching flow menu. The “right” mouse button in this context is a button on the

side of the whiteboard pen. Using that button, the flow menu can easily be activated

from anywhere in the construction area.

The mode-switching flow menu then is highly useful: it allows the quick selection

of modes that produce elements not accessible with scribbling. The visual feedback of

the menu means that users quickly learn the gestures required for the auxiliary modes

they often need. Switching back to ScribbleD is done using the same menu.

Many common actions, e.g. loading a file or deleting an element can be accessed

from this flow menu as well. This eliminates the need to use the menu bar for these

actions. The menu bar is still necessary for some advanced functions like opening

a spherical port or exporting the construction. It should be noted, however, that ex-

pert users that often need any functionality not available in the default flow menu can

6 RESULTS 70

customize it to add these actions.

Not having a toolbar means that there is less visual feedback about the currently

selected mode, only the status bar at the bottom of the window indicates it. This is not

such a big problem, because switching modes is much less necessary when utilizing

scribbling.

The scribbling-based mode switcher is not very useful on the whiteboard. There

are less possible modes and actions available than in the flow menu mode switcher. It

also tends to require longer strokes than the flow menu, which is awkward on a large

whiteboard.

Using the scribbling mode switcher appears a bit like magic to the audience. In

contrast, with the flow menu mode switcher, it is obvious that the presenter is using

a menu. However, drawing the menu may distract the audience from the point under

discussion. Again, a usability study is needed to gain more insight into this matter.

TheInspectgesture of ScribbleD is a very nice feature. Since the Inspector window

appears next to the pointer, the user does not have to move far to change elements’

appearances. Because it can easily be called up again, the user can simply close the

extra window after each interaction. Previously, on a whiteboard, users often moved

the Inspector window next to the main window so it could easily be accessed again.

This is not optimal because the main window then no longer fills the whole screen, and

longer movements are necessary.

QuikWriting (shown in figure 41) is essential in many setups, and nice to have in

the others. It is essential when the platform and the whiteboard drivers do not supply

any text-entry widget; in these cases, only the built-in QuikWriting saves the user from

having to walk to the laptop to change an element’s name. Even if another widget is

available, it will require interacting with another program in another window. Entering

long texts with quikwriting requires some training, but is not necessary anyway in this

scenario. Smaller texts suitable for element names can be entered reasonably quickly

even by a user not familiar with quikwriting.

ScribbleP shows promise that physical simulations can be created using scribbling

6 RESULTS 71

as well. This aids presentations including such simulations.

Overall, the user experience is much improved by scribbling and flow menus. Key-

board use is not necessary any more. The presenter no longer needs to move away

from the current focus of interest to select a different tool, change the appearance of

an element or execute a common action.

6.1.2 Geometric Pocket Calculator

Figure 42 (as well as figure 5 on page 10) shows a Sharp SL-C700 running the new

version of Cinderella. There is no toolbar, but the menu is still available.

Figure 42: A Sharp Zaurus C-700 running Cinderella

ScribbleD is usable on this PDA. All the objects implemented can be recognized.

However, the latency between drawing and recognizing is noticeably higher on this

platform than on an average desktop computer. Using Cinderella as a geometric pocket

calculator requires some patience and concentration, but is possible. The immediate

feedback is very useful in this regard, allowing one to abort gestures that cannot be

recognized correctly anymore.

The display is not as visually pleasing as on a desktop. The platform11 does not

provide antialiasing, making the objects look jagged. Transparency for hinters or flow

11Java 2 Micro Edition, with personal profile. Published by Sun Microsystems.

6 RESULTS 72

menus is not available either. Also, the limited main memory on this PDA runs out

very quickly when enabling double-buffering and doing a non-trivial construction. It

is therefore turned off as well, which leads to a moderate amount of flickering.

Although PDAs normally provide some facility for text entry, QuikWriting remains

a useful option. On the C700, for example, the text entry widget takes up about a third

of the screen space when activated. Therefore, the user usually wants to deactivate it

again after text entry is finished; integrating the text entry widget in the dialog disposes

of it along with the dialog automatically. If the user chooses to employ QuikWriting, it

can be used even quicker than on the whiteboard, because the pen has to move smaller

distances. It works largely as expected.

Calling up a flow menu with the simulated right click discussed in section 4.1.5

allows accessing many actions like loading a file or selecting all elements without

having to use the menu. Doing it this way is much easier to accomplish, because less

exact pointing is required. However, while it is possible to switch to another mode

from ScribbleD, one cannot switch back using the flow menu since there is no way to

activate it. We only have one mouse button, and the gesture cannot be recognized if a

different mode is active. As a workaround, a menu entry to activate the flow menu as

well as one to activate ScribbleD is provided in the menu.

The Inspector is currently not functional on PDAs. Even if it was, it would prob-

ably be too large to be really useful. Cinderella flow menus do have the potential to

replace the Inspector in this regard. The flow menus are usable since they offer less

options at a time.

In summary, the current implementation on today’s PDAs is a prototype for a ge-

ometric pocket calculator. It is usable by dedicated users willing to put up with a few

annoyances, but with this hardware, it is not yet quite ready for the mass market. We

expect that to change in the next few years, however.

6 RESULTS 73

6.1.3 Graphics Tablet

ScribbleD is pleasant to use with a graphics tablet. The high rate of events generated

by a graphics tablet, coupled with a fast computer, means that the software gets many

events and recognition is usually quite good. When a user utilizes a tablet anyway,

scribbling is probably superior to the classic modes, because one does not have to

switch modes so often.

Graphics tablets provide at least two buttons, so it is possible to use the mode

switching modes for the other button(s). Many graphics allow recognizing the “back”

tip of the pen as a second mouse button, usually used as an eraser in drawing programs.

Some pens also have a button on the side, similar to the whiteboard pens by Numonics.

Mode Switching using flow menus is much quicker than the traditional toolbar

method. The gestures for the mode a user needs most often are quickly remembered

and the necessary gestures can be executed fluently then. The scribbling mode switcher

is usable, but the flow menu version is probably preferable, as the scribbling version

needs extra instructions before it can be used.

Whether a user prefers to select modes via the flow menu and use the traditional

modes or rather scribbles most of the time on a graphics tablet is a matter of personal

taste.

The quikwriting is of course usable, but if one is sitting in front of a regular com-

puter anyway, it is probably not that beneficial.

6.1.4 Traditional Pointing Devices

Using scribbling with the mouse is possible with training, but offers no real benefit

over the normal mode of operations. A mouse user is familiar with toolbars, and

moving the pointer to its location is no real problem. Conversely, the exact execution

of motion sequences, especially round ones, is rather hard to get right with a mouse.

As expected, the current user interface is perfectly all right for mouse users.

However, gestures are useful. This is especially true because mice today almost

universally offer a scroll wheel that also functions as a middle mouse button. That

6 RESULTS 74

button is currently unused by Cinderella, so a mode-switchingModecan be configured

there. The scribbling mode switcher actually works well when configured this way.

If the groups are linked to toolbar groups, the feedback of “previous/next mode” is

immediately obvious.

The flow menu is also a possibility for the middle button. Whether it is preferable

is again a matter of personal preference; all its functions can easily be executed in other

ways as well.

On the trackpad of a laptop, it is even harder to do coordinated gestures beyond

simple linear ones. Therefore, the mode switching modes are not really usable. Lap-

tops do not offer a third mouse button anyway, so the right button would have to be

used, losing access to the context menu.

6.2 Future Work

So far, these new sketch recognition facilities were used only people familiar with the

project. The next step is a beta test with actual of the software12.

Naturally, there are many types of objects that scribbling does not recognize yet

and we have several ideas on how to integrate them. However, we will first seek the

opinions of our users.

Originally, we said that we wanted to avoid using more than a single window.

However, the current version still uses a second window for changing element names.

This is not a big problem because the window is only visible during the time the user

interacts with it, and during that time, the main window is not important. However,

eliminating this window is a worthwhile goal especially for the PDA scenario and

for consistency. Doing so will require relatively intrusive changes in Cinderella core

code, because we will have to implement something like a window manager for the

construction area.

As noted earlier, Cinderella Flow Menus have the potential to be used as an alter-

12The beta test is scheduled for the end of 2003. To become a beta tester for Cinderella 2.0 and
get access to a version including sketch recognition, please visithttp://lists.spline.inf.
fu-berlin.de/mailman/listinfo/cindybeta .

6 RESULTS 75

nate Inspector. This would eliminate the other extra window we still use. It would be

beneficial on platforms with limited screen space, or when a second window is cum-

bersome. To accomplish this, Cinderella core code will have to be generalized and

cleaned up a bit.

For the lecture scenario, it might be beneficial to allow switching the mode for one

action only. So, using the flow menu mode switcher, one could switch to “Define Lo-

cus” mode and define a locus, but be automatically back in scribbling mode afterwards.

This might make the work flow more fluent, because less manual switching is required

for the common case. To accomplish this, however, again core code will have to be

modified. It is currently not possible to be notified when something has been inserted.

Revisiting the argument that scribbling widens the gap between presenter and audi-

ence, it might be worthwhile to implement a possibility to use the flow menu without

displaying it. That way, it too looks like magic and does not distract the audience.

Probably, a timeout before displaying it would be a good solution.

Another area worth pursuing further is to push sketch recognition deeper into Cin-

derella. The most obvious benefit to that would be the possibility to recognize gestures,

e.g. for simulating a click of the right mouse button, in all modes. That way, gesture

recognition would become universally available on platforms that support only one

button.

Implementing this change would entail a restructuring of the scribbling framework

as well, because we do not want to analyze a stroke twice – once for recognizing

gestures that can happen in all modes, and another time in a scribbling mode if that is

the currently active one. So the concept ofStroke s would have to be moved into the

core code, with the scribbling modes using the globalStroke .

It is still an open question whether generic recognition parameters are sufficient

or different profiles for different scenarios are beneficial. So far, the same parameters

work in all scenarios. A systematic search for optimal parameters for PDAs needs to

be undertaken. If profiles are needed as a result, the scribbling framework will have to

be modified accordingly, providing appropriateScribbleModeConfigurator s.

6 RESULTS 76

A GUI for preferences is also very desirable, not only for the scribbling framework.

It should be possible to configure e.g. secondary and tertiary modes, toolbars and flow

menus using a graphical user interface. This is a not quite trivial project because it

should encompass all of the configuration possibilities Cinderella currently offers.

We already mentioned worthwhile areas for usability studies above. In general,

usability studies are desirable concerning the different usage scenarios of Cinderella.

6.3 Conclusion

In this thesis, the differences between traditional pointing devices and pen-driven de-

vices were analyzed. We identifiedstroke recognitionas a worthwhile approach to

enhancing the usability of Dynamic Geometry Software on these devices. Two com-

plementary approaches to stroke recognition,ScribblingandCinderella Flow Menus,

were implemented.

The changes made in the practical part of this thesis are incorporated into the cur-

rent development version of Cinderella and will be included in the upcoming 2.0 re-

lease. The source code developed for the scribbling framework is available from [15],

because it might be adapted to other Java programs.

In summary, using Dynamic Geometry Software in the target scenarios has been

significantly improved by the efforts of this thesis. Recognizing elements directly

from sketches works reasonably well on pen-driven devices. The new scribbling mode

surpasses the old one in functionality already and we expect to extend it further. The

immediate feedback makes it easier to learn. Even if the scribbling mode is not capable

of the next action the user wishes to do, the user never has to move the pen far away

from his or her current area of attention, due to the new Cinderella Flow Menus.

A User’s Guide to Scribbling

Scribbling is a new user interface for creating Cinderella constructions. It is based on the idea
of directly recognizing sketches to the geometric objects you intended to draw. It is most useful on
pen-driven devices such as interactive whiteboards, PDAs or graphics tablets.

Selecting and Moving
Tap an object once to select or deselct it. Tap in an empty space to
deselect all. Move a selected object by dragging it.
This applies to points as well as other free elements, such asCircle by
Radius.
Lines
Draw a line to create a line through two points. The endpointsare
created if they do not exist. Short lines are cut off at the endpoints,
lines over 80% of the window are not.
Preselect another line and draw a scribble parallel or orthogonal to it to
create aParallel or Orthogonal.
Preselect two lines and draw anAngular Bisector to create one.

Polylines
Draw multiple lines to create a sequence of segments.
If the last point is near the first point, aPolygon is created.

Circles
Draw a circle to create aCircle By Radius. A midpoint is created if it
does not exist. Preselect a midpoint for greater tolerance.
Pass exactly 3 existing points to create aCircle By 3 Points. Pass ex-
actly 1 point to create aCircle By Midpoint and Border Point.

Points
Draw a small scribble to create aFree Point. Preselect two points and
draw a small scribble in the middle of those to create aMidpoint.

Undo and Redo
Draw a horizontal, straight, quick scribble over 30% of the window width to the left to undo the last
action; to the right to redo an action.

Edit Label
Double-click an element, i.e., tap it twice within a short time, to edit its label.

Delete All
Draw a quick, large gesture, crossing out all of the construction, to delete all elements.

Inspect
A straight line down, then back up to the startpoint opens theInspector.

Right Click
A straight line up, then back down simulates a right mouse button click. Usually, this brings up the
context menu.

LIST OF FIGURES 78

List of Figures

1 A static figure . 1

2 An “interactive” figure . 1

3 The main Cinderella window . 3

4 A Numonics Whiteboard attached to a computer running Cinderella

with its normal user interface. 8

5 A Sharp Zaurus SL C-700 running Cinderella 10

6 A screenshot of ScribbleJ . 17

7 Sample Opera gestures . 21

8 An example menu, from the GIMP [13] 23

9 Overview of control flow during a stroke 27

10 Setup when a mode is activated . 28

11 Setup of Hinters . 30

12 UML diagram of the design model 31

13 A Hinter visualizing the Center Distiller 33

14 The interactive ScribbleModeConfigurator 34

15 A linear sequence . 38

16 A non-linear sequence . 38

17 A sketched sequence of segments . 41

18 Averaging 11 neighboring points - Whiteboard 41

19 Averaging 11 neighboring points - Graphics tablet 41

20 Recognizing lines . 47

21 Recognizing polylines . 48

22 Polylines with obtuse angles . 49

23 Scribbling a “Free Mass With Velocity” 52

24 Scribbling Bouncers . 53

25 The effect of Bouncers . 53

26 Scribbling a Spring . 54

27 Scribbling a Rubber Band . 55

LIST OF FIGURES 79

28 Scribbling a ”Play Button” . 56

29 Simulating the orbits of two planets 56

30 Visualizing mode switches . 57

31 Quikwriting an “f”’ and the word “the” 60

32 UML diagram ofCinderella Flow Menus 62

33 8 outer zones . 63

34 3 outer zones . 63

35 Switching modes . 64

36 A modes-submenu . 64

37 Using QuikWriting . 65

38 Activating the flow menu Inspector 67

39 Selecting the desired color . 67

40 Result . 67

41 A Numonics Whiteboard with Cinderella and ScribbleD 68

42 A Sharp Zaurus C-700 running Cinderella 71

REFERENCES 80

References
Books and Papers:

[1] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns.

Addison-Wesley 1996.

[2] François Guimbretière, Terry Winograd: FlowMenu: Combining Command,

Text and Data Entry. Stanford CS Technical Report CS-TR-2000-01. May 2000.

[3] Takeo Igaraashi, Satoshi Matsuoka, Sachiko Kawachiya, Hidehiko Tanaka: Inter-

active Beautification: A Technique for Rapid Geometric Design. In: Symposium

on User Interface Software and Technology, pages 105-114, 1997.

[4] Ulrich Kortenkamp, Jürgen Richter-Gebert: Grundlagen dynamischer Geome-

trie. In: Zeichnung – Figur – Zugfigur, pages 123-144, Franzbecker, 2001.

[5] Ulrich Kortenkamp: Foundations of Dynamic Geometry. Dissertation at ETH

Zürich, No. 13403. 1999.

[6] Ulrich Kortenkamp, Jürgen Richter-Gebert: The Interactive Geometry Software

Cinderella. Springer-Verlag 1998.

[7] James V. Mahoney, Markus P. J. Fromherz: Three main concerns in sketch recog-

nition and an approach to addressing them. In AAAI Spring Symposium on

Sketch Understanding, 2002.

[8] Michael Moyle, Andy Cockburn: Analysing Mouse and Pen Flick Gestures.

Proceedings of the SIGCHI-NZ Symposium On Computer-Human Interaction,

pages 39–46, 2002.

[9] Ken Perlin: Quikwriting: Continuous Stylus-Based Text Entry. In Proceedings

of UIST ’98, pages 213-214, 1998.

[10] Michael Trinder: The Computer’s Role in Sketch Design: A Transparent Sketch-

ing Medium. In Computers and Building, Proceedings of CAADfutures99, At-

lanta, pages 227-244.

REFERENCES 81

Online Resources:

[11] Generic Gestures for Mac OS X:

http://www.bitart.com/CocoaGestures.html

[12] Gestures-plugin for the Mozilla Browser:

http://optimoz.mozdev.org/gestures/

[13] Home page of the image manipulation software “The Gimp:”

http://www.gimp.org

[14] Pie Menus by Don Hopkins.

http://www.piemenus.com/piemenus-hopkins.html , viewed on

November 25, 2003.

[15] Source code ofScribbling.For academic use only, not usable standalone.

http://www.cinderella.de/contrib/scribbling/

[16] The Cinderella Website:

http://www.cinderella.de

[17] The Website of @Last company describing their SketchUp product:

http://www.sketch3d.com/

[18] The Website of Hitachi concerning the StarBoard product:

http://www.hitachisoft-interactive.com/Templates/

Hitachi_UK_StarBoard.asp?mID=Content&uID=267

[19] The Website of mcr GmbH, German distributors of Numonics Whiteboards:

http://www.mcr-gmbh.com/

[20] The Website of Numonics, producers of interactive Whiteboards:

http://www.numonics.com/ipdindex.html

[21] Webpage by Opera software describing the Opera browser’s gestures:

http://www.opera.com/features/mouse/index.dml?

platform=linux

[22] Website for Quicksketch of TU Ilmenau:

http://tom.prakinf.tu-ilmenau.de/en/Research/

Projects/QSketch , viewed on November 22, 2003.

